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Understandmg the Glaczatmg States of Mixed-Phase Clouds.
| With insight into ice particle habit evolution
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Mixed-Phase Cloud || 2D Kinematic Studies ||Glaciating States:
o Fixed overturning eddies  ©@ Sedimentation of ice
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Ice Gro W th Matters Eulertan tests reveal more stable water paths when
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Radiative Cooling

* Drives buoyant production of tu bl

* Force d ct condensation within on layer
* Requires minimum amount of clo dlq dwt
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( * Cloud- forced turbulent mixed layer with strong narrow 1 O
downdrafts weak broad updrafts, and g,,, and 6;

early constant with height
Ice . Small-scale, weak turbulence in cloudy inversion layer
precipitation * Large-scale advection of water vapour important
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* Turbulence andqco ntr 'b tions can be weak or stron g . ,"
Morrison et al. (2011),

* Sink of atmosph ¢ mo isture due to p cipitatio
Nature Geosciences

Tt ---

oy gy
|

4
Q)
S
cg.

4

oupled

[

» Surface type (oc e, land) influe nteractlon
with cloud
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Assuming spherical ice growth can

Layer Temperature (K)

misinterpret the potential vapor uptake, and

WRF S . Domain: 65 x 65 horizontal grid points
hence the consumption of iquid water. - I /I ': . 200 vertical grid points
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| decrease for (at -15): Studies of ISDAC Flight 31, following Ovchinnikov et al. (2011)
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