Perturbed-parameter Simulations of the MJO with CAM5
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Motivation and Approach

» Modelers would like to understand how their
climate models could better simulate an MJO
o CAMS is noticeably worse than CAM4 which was
CIUite gOOd (Subramanian etal. 2012). Why')
> We systematically explore the dependencies of
CAM5’s MJO simulation on uncertain parameters,
with a “perturbed-parameter ensemble” technique
 To what extent, do the parameters control the
interactions of the parameterized processes and
influence the MJO?
 Are better MJOs within tuning ranges? Or are new
parameterizations needed?
» We wish to more fully explore the range of model
MJO behaviors as a function of parameters

Perturbed Parameter Simulations

“Climate”:
= CAM5.1 @ 2° resolution
= 5-year “AMIP” simulations (i.e. prescribed SSTs
for 2000-05)
= Two ensembles:

» Perturbed each of 22 parameters in CAM's
physical parameterizations ONE-AT-A-TIME
(“OAT") (# of simulations = 2*22 + 1 = 45)

 Simultaneously perturb 22 parameters using
Latin Hypercube Sampling (“‘LHS”) (# of
simulations = 1100)

= These simulations were performed for another
project = Only hourly (total) precipitation is
available for our analysis

Parameters Varied
modelSection_modelVariable variable description lowvalue default high value
—  Clfrc_rhminh Threshold RH for fraction high stable clouds 065 08 085
cldfrc_rhminl Threshold RH for fraction low stable clouds 08 0.8875 099
Large- Clewatmi_ai Fall speed parameter for cloud ice 30 700 1400
Scale - Cldwaimi_as Fall speed parameter for snow 58 112 B4
Cloud cldwatmi_cdnl Cloud droplet number fimiter 0 0 1e+06
cldwatmi_dcs Autoconversion size threshold for ice to snow 00001 0.0004  0.0005
Cldwatmi_eii Collection efficiency aggregation of ice 0.001 0.1 1
—  Cldwatmi_gcvar Inverse relative variance of sub-grid cloud water 05 2 5
Aerosolg dust_emis fact Dust emission tuning factor 0.21 0.35 0.86
PBLTU ey a2 Maist entrainment enhancement parameter 10 30 50
_'éigg { micropa. wsubimax Maximum sub-grid vertical velocity forice nucleation 0.1 02 1
Cloud micropa_wsubmin Minimum sub-grid vertical velocity for liquid nucleation 0 02 1
—  uwshcu_criqc Maximum updraft condensate 00005 00007  0.0015
Shallow|  uwshcu kevp Evaporative efficiency fe06 2006 2005
Conv. | uwshcu km Fractional updraft mixing efficiency 8 14 16
L uwshcu_rpen Penetrative updraft entrainment efficiency 1 5 10
— zmeonv alfa Initial cloud downdraft mass flux 0.05 0.1 06
zmeonv_c0_Ind Deep convection precipitation efficiency over land 0001 0.0059 0.01
Deep zmeonv_c0_ocn Deep convection precipitation efficiency over ocean 0.001 0.045 0.1
Conv."] zmeonv_dmpdz Parcel fractional mass entrainment rate 00002 0.001 0.002
zmeonv_ke Evaporation efficiency parameter 507 16 fe0d
L zmeonv_fau Convective time scale 1800 3600 28800

a) Correlation coefficient with the pattern of lead-lag
correlation coefficients of band-passed filtered
5° N-5° Saveraged precipitation with that in the
Indian Ocean (70° -90° E)

b) East-west power ratio of precipitation variance in
wavenumbers 1-5 and periods 20 - 90 days

Power Spectra

N wfwinter_TRMM 20.0-90.0-01-05
TRMM IO lag correlation /W power = 2.17722544268
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Surrogate Model Improved MJO

What Parameters Matter? What values improve the
simulations?

General approach
= Fit a mathematical “surrogate” model that relates the
predictands (metrics of MJO simulation) to the
predictors (physics parameters perturbed)
= Use “surrogate” model to tell you which predictors
have influence and which are immaterial
= Create a new “surrogate” model with only the
important predictors
= Use the new “surrogate” model and the observed
predictand values to create likelihood estimates of the
predictors
Specific methods used
= Sparse Polynomial Chaos Expansion (3™ order)
(PCE)
= Random Forest Regression (ET) (8reiman 2001)

Deep convection parameters matter
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Deep convection parameters matter

Parameter Likelihoods
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» Note that the largest weights

happen at the ends of the

parameter ranges

— This suggests that improvement performance
would result if one allowed the parameters to
go outside of the pre-specified ranges
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Best-1: best setting based on initial creteria

Best-2: guidance from UQ Minimum values of cO_ocn, tau, and
conv_ke. dmpdz used the default, alfa used default. UQ indicated
the dmpdz was about right and alfa had low sensitivity

Preliminary Conclusions

» Perturbed-parameter technique allows a more thorough
exploration of model sensitivities than normally done

» Improved simulations result from making it harder for
deep convection to occur but when it occurs reducing
the drying tendency of convection while trying get the
convection over faster

> Issues:
» 5yearsis a bit short and introduces noise
1100 simulations is insufficient for a 22 dimensional

space

Future Work

» Next steps

» More diagnostics from longer simulations for
selected runs

» Would an improved simulation result if we just
change the parameters that are important, rather
than all 22 simultaneously

» Would we get a different impression from coupled-
ocean atmosphere modeling?

» Comparison with hindcasts results (not shown
today):
 Difference: cO_ocn is unimportant for precip in
hindcasts (it matters for OLR/WVP)
 Similarity: shorter tau is a better solution
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