The Role of Cloud Microphysics in the Simulation of Mesoscale **Convective Systems (MCS) in the Tropical Western Pacific**

K. Van Weverberg^{1,2}, A.M. Vogelmann¹, W. Lin¹, E.P. Luke¹, A. Cialella¹, P. Minnis³, M. Khaiyer⁴, E.R. Boer⁵, M.P. Jensen¹

¹ Brookhaven National Laboratory, ² Université catholique de Louvain, ³ National Aeronautics and Space Administration Langley Research Center, ⁴ Science Systems and Applications, Inc., ⁵ Entropy Control, Inc.

Motivation

- Tropical deep convection and related high clouds are crucial to the global radiation and water balance, yet remain a challenge for CRMs
- Physical reasons for discrepancies between different models should be understood to improve the simulation of such clouds
- Sensitivity of CRM MCS simulations to various microphysics parameterizations using a very large TWP domain size

1. Simulation details

• WRF 6-day simulations December 2003, driven by GFS • 1725 × 1110 × 35 gp, Δx=4 km, sensitivity with 3 microphysics schemes:

<u>THOM</u> hybrid scheme (2-moment for ice and rain) WSM6: 1-moment scheme **MORR: 2-moment scheme** (Morrison et al. 2009) (Hong and Lim 2006) (Thompson et al. 2008)

GDES WSM6 MDRR THOM

2. MCS ISCCP Cloud Classification

ISCCP classifications based on CTP and COT for GOES and WRF

GDES WSM6 MDRR MDRR MDRR WSM6 WSM6 MDRR MDRR THOM

Histograms for 6-day period

4. MCS Microphysics

CFADs for ice and snow mass and velocities

 \rightarrow Overestimation of high clouds in THOM and MORR \rightarrow Underestimation of high clouds in WSM6

3. MCS Statistics

MCS identification and tracking algorithm by Boer and Ramanathan (1997) applied to GOES and simulated cloud fields:

	No. Tracks	Size (10 ⁵ km ²)			BT (K)		
		Core	Anvil	Total	Core	Anvil	Total
GOES	31	1.6	7.1	8.7	210	246	238
NSM6	18	0.7	4.8	5.6	215	237	233
MORR	15	3.0	11.2	14.2	215	238	232
THOM	30	2.6	8.6	11.2	214	239	232
	Longevity (h)	СОТ			CTP (hPa)		
		Core	Anvil	Total	Core	Anvil	Total
GOES	21	26.9	8.6	12.6	162	256	235
VSM6	19	26.1	19.0	20.3	208	370	341
MORR	32	23.4	15.6	17.4	131	201	184
THOM	24	29.8	12.2	17.1	129	231	203
Larger MCSs and anvils in							

Artistic representation of snow and ice properties

- \rightarrow MORR high clouds: prevailing small, slow ice crystals \rightarrow <u>THOM high clouds</u>: prevailing small, slow snow flakes
- **MCS vertical cross sections**

Fast fallout of condensate in WSM6

Summary

- Schemes that exhibit slow ice/snow sedimentation rates aloft have more numerous and larger MCSs with larger anvils
- Complex 2-moment schemes do not outperform 1-moment schemes (nucleation, sedimentation more important than size distributions)
- Limited variability among the investigated schemes in terms of surface precipitation. All exhibit overestimations of 20 % (not shown)

References

- Boer, E.R., V. Ramanathan, 1997: Lagrangian approach for deriving cloud characteristics from satellite observations and its implications to cloud parameterization. J. Geophys. Res., 102, 21383-21399.
- Hong, S.-Y., Lim, J.-O, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
- Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Wea. Rev., 137, 991-1007.
- Thompson, G., P.R. Field, R.M. Rasmussen, W.D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115.
- Van Weverberg, K., A.M. Vogelmann, W. Lin, E.P. Luke, A. Cialella, P. Minnis, M. Khaiyer, E.R. Boer, M.P. Jensen, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the Tropical Western Pacific. J. Atmos. Sci., in press.