

Multi-Satellite Observations of NO_x Emissions Increase in Indian Thermal Power Sector from 1996 to 2010

Decision and Information Sciences Division, Argonne National Laboratory, Argonne, Illinois, USA

Background & Objective

Background

- India is the second largest NO_x emitting country in Asia \geq ~16% of total Asian emissions
- Thermal power plants are the most important point sources in India \geq ~30% of the national NO_x emissions
- Due to the rapid economic growth and the absence of regulations, NO_x emissions in the Indian power sector have increased dramatically since the mid-1990s. However, few previous studies... \succ present year-by-year trends with up-to-date activity rates
 - \geq applied fuel/boiler-size/control specific NO_x emission factors, but used default IPCC emission factors to all power plants
- \succ used activity rates at the plant or unit level, but instead at the country or state level • Tropospheric NO₂ columns retrieved from satellites have been successfully applied to identify and constrain NO_x emissions from large thermal power plants. However,...
 - \succ there have been very few quantitative applications to India

Objective

- Use a unit-based methodology to develop new NO_x emission inventories for Indian power plants during 1996–2010
- Examine the India NO_x emission trend of thermal power plants during 1996–2010 from the viewpoints of both unit-based inventories and multi-satellite observations
- Study the effect of the large NO_x releases from the power sector to the Indian atmospheric environment for recent years

Methodology & Data Sets

Unit-wise Activity Rates and Information

- All Indian thermal power units with capacity >20 MW are included > 800 units
 - > geographical location, boiler size (capacity), fuel type, electricity generation, specific fuel consumption, exact time when the unit came into operation and/or retired, etc.

<u>NO, Emission Factors (EFs) and Control Scenarios</u>

- For coal-fired units:
 - \geq NO_x emissions are not regulated in India for coal-fired power plants. Five emission scenarios are generated to reflect possible alternative NO_x emission situations

Boiler-size-specific and emission-control-specific EFs										
	Doilor oite		EFs	Courses	Emission scer					
	Bollet Size	LINB	(g/GJ)	Source	S1	S2	S 3	S 4	S5,	
	Not classif	ied	300	IPCC, 2006	Х					
	<100 MW	w/o	308	Zhao et al., 2008		Х	Х	Х	2	
		w/	177	Estimated **						
	100-300 MW	w/o	330	Zhao et al., 2008		Х	Х)	
		w/	188	Zhao et al., 2010				Х		
	≥300 MW	w/o	410	IPCC EFDB, 2012		Х)	
		w/	236	Zhao et al., 2008, 2010			Х	Х		
* LNB: low-NO _x burner. ** Assuming the average removal efficiency of the LNB de								ces is	\$ 43%	
• For gas-fired and oil-fired power plants:										
\succ India has emission standards varving with the unit age and size										
NO.	Emission	s froi	n Pov	ver Plant i (Mg	/vr)				
Fuel Boiler Electricity Net calorific										
type size generation value (MJ/kg)										
$E = \sum \sum \sum \sum \sum \left(C \times SEC \times NCV \times EE \times 10^{-9} \right)$										
	$E_i - \sum_i$	$ \sum_{k} \sum_{l}$		$j_{k} \wedge \operatorname{Specific}_{i,j,k} \wedge \operatorname{NC}_{i,j,k}$	• _j ~	Lrj,	l,m ·	~ 1(, ,	
	J		Control	consumption	NC) _x err	nissio	on		
		Unit te	chnology	/ (kg/kWh)	fac	ctor (g/G.)		
				The	4 th		SC	e	na	

Zifeng Lu, David G. Streets

• Compared to activity rates and EFs, LNB-related parameters seem to be a more crucial factor that influences the accuracy of NO_x emission estimates in India

NO₂ Observed from Space

NO₂ Tropospheric Vertical Column De

- OMI • SCIAMACHY
- GOME-2
- GOME
- Monthly level 3, KNMI, DOMINO Monthly level 3, KNMI, TM4NO2A Monthly level 3, KNMI, TM4NO2A Monthly level 3, KNMI, TM4NO2A v2.0

Spatial distribution of power plants NO_x emissions and OMI NO_2 TVCDs

- A number of satellite NO₂ hot spot are observed over India, and they match the locations of power plants reasonably well Seasonality •
 - \geq NO₂ columns are high in winter and low in the monsoon season
- Combining the adjacent plants, 81 power plant areas were defined
- For power plant area n, NO₂ TVCD attributed to emissions from thermal power plants (TVCD_{power}) is calculated by:

 $\text{TVCD}_{\text{power},n} = f_{\text{power},n} \times \text{TVCD}_{\text{total},n} = \frac{E_{\text{power},n}}{E_{\text{total},n}} \times \text{TVCD}_{\text{total},n}$

Gridded emissions of other sources were taken from EDGAR4.2 for the year 2005 and scaled to 1996–2010 based on the GAINS inventory

nce Team Meeting of the Atmospheric System Research (ASR) Program Potomac, Maryland, March 18–21, 2013

- *NO_x* emissions 1996-2010 71–103% increase
- By fuel type ~95% from coal-fired units ~4% from gas-fired units ~1% from oil-fired units
- *Emission uncertainties* due to uncertainties in activity and EFs alone *±*11~15%

ensities	(TVCDs
) v2.0	2005-201
A v2.0	2003-201
PA v2.1	2007-201
A v 2 0	1996-200

Zhao, Y. et al. (2010) Establishment of a database of emission factors for atmospheric pollutants from Chinese coalfired power plants. Atmos. Environ., 44, 1515-1523.

Acknowledgments

This work was sponsored by the Ganges Valley Aerosol Experiment (GVAX) by the Office of Biological and Environmental Research in the U.S. Department of Energy, Office of Science. The satellite analysis was partially funded in support of the National Aeronautics and Space Administration (NASA) as part of the Air Quality Applied Sciences Team (AQAST) program.

