The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface Layer and Cloud-Top Inversion Layer Moisture and Ice Nuclei Sources

Amy Solomon12, Matt Shupe13, Ola Persson13, Hugh Morrison3 Takanobu Yamaguchi12, Peter M. Caldwell4, Gisje de Boer5, Graham Feingold1, Barbara Evans12

1NOAA/Earth System Research Laboratory, Boulder, Colorado, 2CIRES/University of Colorado, Boulder, Colorado, 3National Center for Atmospheric Research, Boulder, Colorado, 4Lawrence Livermore National Laboratory, Livermore, California

Motivation

Observations indicate that the processes that maintain subcloud and Arctic stratocumulus (Sc) differ, due to the different environments in which they occur. For example, specific humidity inversions (specific humidity increasing with height) are frequently observed to occur coincident with temperature inversions in the Arctic (e.g., Curry et al. 1996, Tjembrebr and S. 2004, S. and Tjembrebr 2009). In a recent study, S. and Tjembrebr (2013) surveyed data from SHEBA, ASCOS and at Barrow, Alaska, to find that specific humidity inversions occurred 75-80% of the time when large-scale clouds were present. In addition, this study found a significant relationship between the existence of specific humidity inversions and Arctic Mixed-Phase Stratocumulus (AMPS) that extends into the temperature inversion, highlighting the difference between AMPS and subcloud stratocumulus where the entrainment of dry air aloft prevents cloud liquid water from forming in the temperature inversion. Other important differences between warm Sc and AMPS are more effective cloud top radiative cooling due to cold, dry overlying Arctic free water. In warm Sc, droplets grow by collision-coalescence of droplets, so as liquid water in warm Sc decreases, drizzle will shut off.

In this study we focus on quantifying the relative impact of cloud-top and sub-cloud layer sources of moisture and ice nuclei on the microphysical-radiative-dynamical feedbacks in an AMPS cloud system. In LES of the Department of Energy Atmospheric System Research Indirect and Semi Direct Aerosol Campaign (EDAC) “Golden Days” 8 April 2008:

Impact of Ice:
“Control” vs. “NoIce”

Both runs: Cloud extends into the inversion and above the mixed layer top. Max LWC just below inversion base.

Max LWC just below inversion.

Impact of Sedimentation and Latent Heating in “NoIce”

Removing sedimentation removes the minima just above the mixed-layer top, increases the LWP and moving the cloud top higher into the inversion.

The increase in LWP increases the longwave radiative cooling rates. However, the increase in radiative cooling occurs within the transition layer between cloud top and mixed-layer top, with radiative cooling rates actually decreasing at the top of the mixed layer relative to NoIce. This causes TKE and MSE tendencies to decrease in the mixed-layer relative to NoIce.

In the absence of latent heating potential temperature is the conserved and well-mixed field in the mixed layer, as opposed to equivalent potential temperature when latent heating is allowed. This causes temperatures to be colder in the cloud layer, which reduces the saturation vapor pressure, reducing the water vapor mixing ratio and increasing the cloud water mixing ratio. The cloud layer shows no sign of collapsing without latent heating.

Including IN Sources and Sinks:

Prognostic IN:

Role of Cloud-top and Mixed-Layer Base Entrainment

Role of Recycling

Initial Total Water Profiles for Sensitivity Studies

Impact of Removing Humidity Inversion: Focusing on “DryAbove” Simulation

Cloud layer extends into inversion and above mixed layer top even though air is dry

LWP decreases by 5%

Buoyancy fluxes larger in lower cloud layer and subcloud layer

Cloud layer and mixed layer descend faster

Conclusions

Without or with ice, with or without a humidity inversion, the cloud layer extends into the temperature inversion (above the mixed layer top) producing a precipitation flux into the mixed layer.

The cloud layer is remarkably insensitive to changes in moisture source.

When the overlying air is initially dried, radiative cooling and turbulent entrainment increase moisture import from the surface layer.

When the surface layer is initially dried, reduction in mixed-layer water vapor and a moistening of the surface layer evolve to reduce the loss of water through precipitation and entrainment.

As a result, the total condensed water is found to be similar for all three cases. Only when moisture is cut off both above and below the mixed layer does the cloud layer constantly decay without reaching a quasi-equilibrium state.

Allowing for prognostic IN demonstrates that:

- Entrainment of IN at cloud-top plays a limited role.
- IN is entrained into the mixed layer by a continuous deepening of the cloud-driven mixed layer.
- Recycling increases mixed-layer IN by ~50%


This research was supported by the Office of Science (BER), U.S. Department of Energy DE-FG02-05ER63965 and National Science Foundation (ARC-1023366).