

Top-of-Atmosphere Shortwave and Longwave Broadband Fluxes Derived using Various Satellites over ARM Domains

M. M. Khaiyer, C. Yost, K. Bedka, W. Miller, A. Shrestha, M. Nordeen, R. Boeke Science Systems and Applications Inc, Hampton, VA

P. Minnis, S. Kato NASA/Langley Research Center, Hampton, VA

Introduction

 Top-of-atmosphere (TOA) broadband (BB) longwave (LW) and shortwave (SW) fluxes essential for evaluating climate change & cloud-radiative interactions

 Current satellites measure the nonpolar Earth Radiation Budget (ERB) only at specific local times, providing a diurnally limited ERB, must expand ERB measurements to cover the diurnal cycle and provide higher spatial resolution than traditional ERB data -CERES Terra: 1030/2230 LT

Aqua: 0130/1330 LT

Expand ERB measurements using geostationary (GEO) satellite Convert narrowband (NB) fluxes to BB SW & LW fluxes using fits to CERES data - can estimate TOA fluxes 24/7, but there are also limitations:

no polar views, GEO calibration issues can render large areas un · Use polar-orbiting satellites (e.g. NOAA-xx series) to fill in GEO gaps

NASA/Langley Cloud group routinely derives cloud & radiative parameters from various GEO satellites using VISST & SIST algorithms

-GOES-x vs CERES Terra NB-BB fits, accounting for season (SW & LW) & day/night (LW) routinely used to convert GOES NB to BB fluxes over ARM SGP -OBJECTIVE

Develop & assess fits for GEO (MTSAT-2) based on CERES over TWP, and preliminary fits for NOAA-9 based on ERBE for global coverage including hard-to-observe areas like Gan Island, NSA

Approach

- GEO: Match 1° average MTSAT-2 data to CERES SFC: 0-17°S, 121-140°E Fits: MTSAT-2 vs Terra CERES: Jan-Mar2012 (Wet Season) and May Oct2011 (Dry Season)
 - Compare results of both fits using 2011-2013 CERES Terra data
- POLAR: Match collocated AVHRR data with ERBE SSF footprints: global its: AVHRR vs NOAA-9 ERBE: Monthly 1986 da Compare results of monthly fits applied to Oct 2008 NOAA-18 AVHRR to

CERES Aqua Data & Methodology

ERB data: CERES and ERBE $A_{SW} = SW$ albedo; $M_{LW} = LW$ flux or OLR; $M_{SW} = A_{SW} * E_o^* y_o$ $E_o =$ incoming SW flux, $\mu_o = \cos(SZA)$, SZA = solar zenith angle

GEO matching:

• CERES 1°grid instantaneous Gridded Surface Fluxes and Clouds (SFC): Terra Ed3 CERES FM-1/2 scanner BB fluxes Asw M_W MTSAT-2 1°-avg calibrated 0.65-µm albedos Anb and 10.8-µm fluxes Mnb • Match 2011-2012 CERES & MTSAT-2 1° data within ± 15 minutes of overpass time for CERES VZA < 65°

POLAR matching:

Collocated 1986 NOAA-9 ERBE & AVHRR footprint data for VZA < 65° AVHRR A_{nb} , M_{nb} convoluted to match ERBE footprint A_{SW} , M_{LW} , for same time

Fit matched data to1:

 $A_{SW} = a_0 + a_1^* A_{nb} + a_2^* A_{nb}^2 + a_3^* \ln(1/\mu_o)$ $M_{LW} = A_0 + A_1^* M_{nb} + A_2^* M_{nb}^2 + A_3^* M_{nb}^* \ln(\text{colRH})$ (2)

where coIRH=column-weighted RH from MERRA/MOA profiles · Apply 3rd-order correction to OLR

GEO (MTSAT2)-CERES SW & LW NB-BB Fits

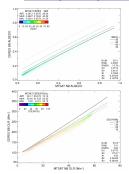
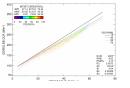
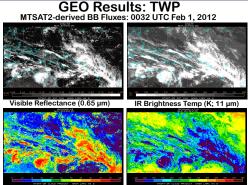
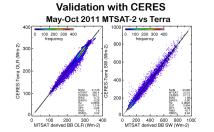
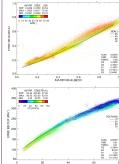




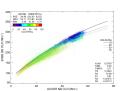
Fig. 1 Darwin area Wet Season (Jan-Mar12) 1° ocean MTSAT-2 NB Mar12) 1° ocean MTSAT-2 NB regressed against Terra BR (a) daytime albedo, (b) daytime LW fluxes, & (c) night LW fluxes. Similar regressions for Jan-Mar12 land (not shown). Also, a set of ocean/land regressions for the Dry Season was performed using data from May-October 2011 (not shown).

BB LW TOA Flux (Wm-2) BB SW TOA Albedo (%) Fig. 2 MTSAT-2-derived BB albedo and LW flux over the Tropical Western Pacific region for 0032 UTC on February 1, 2012.

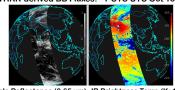


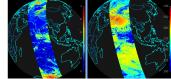

Fig. 3 MTSAT-2 fluxes derived using Dry Season May-Oct11 MTSAT-2 vs Terra NB-BB fits (LW left, SW right) compared to CERES Terra BB fluxes, for same time period. Validation was performed for Wet Season Jan-Mar12 as well (not shown).


Independent Assessment: GEO MTSAT-2 Wet and Dry Season fits vs Terra/Aqua


Table 1. Shows independent assessments of SW and LW biases/rms for fluxes derived using Wet Season fit applied to March 2013, and Dry Season fit applied to (May-July 2012) compared to CERES Ed3 Terra and Aqua.

	March 2013 (Wet Season Fit)		May-July 2012 (Dry Season Fit)	
	Terra (W/m^2)	Aqua (W/m^2)	Terra (W/m^2)	Aqua (W/m^2)
SW Bias (RMS)	-0.1 (25.7)	17.7 (50.1)	1.7 (19.5)	1.8 (20.3)
LW Bias (RMS)	-2.1 (7.9)	-1.9 (8.1)	-0.3 (8.3)	-0.3 (8.3)

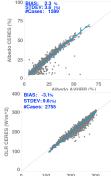

POLAR (NOAA-9)-ERBE SW & LW NB-BB Fits



POLAR Results: Gan Island AVHRR-derived BB Fluxes: ~7 UTC UTC Oct 18, 2008

Visible Reflectance (0.65 µm) IR Brightness Temp (K; 11 µm)

BB SW TOA Albedo (%) BB LW TOA Flux (Wm⁻²)


Fig. 5 Swaths of NOAA-18 AVHRR-derived BB albedo and LW flux over the region including Gan Island in the Indian Ocean, for ~7 UTC on October 18, 2008.

Independent Assessment: POLAR Oct86 fits vs Aqua

percent

Fig. 6 Oct08 1 degree averaged AVHRR-derived BB albedo, derived using October 1986 NB-BB fits, compared to CERES Aqua BB SFC (1 deg) albedo over the Darwin region, within a 15 minute window (TOP). Bottom plot shows climiter comprisers bri with OLB

similar comparison, but with OLR Biases for both are within a few

Produced NB-BB fits for both GEO (MTSAT-2) and POLAR (NOAA9) satellites to derive BB LW & SW TOA fluxes for various ARM

- Process NOAA-xx for 1978 present using improved NOAA-ERBE/NOAA-CERES NB-BB fits -Allows for retrievals over NSA, Gan Island, other data-sparse areas of interest to ARM
- Re-derive GEO NB-BB fits for all available years, seasons of SGP GOES-8-14, TWP MTSAT-1/2

Website: (http://www-pm.larc.nasa.gov)

domains

- Accounted for seasonal, day-night, land-ocean (and snow for NOAA9) differences
 Produced MTSAT-2 VISST results/TOA fluxes for Jan11-October 2013; most months currently in ARM archive; rest will be sent

•Future work

Validate NOAA-18 AVHRR-derived results using POLAR NB-BB fits compared to CERES over all ARM domains Improve NOAA-xx NB-BB fits by deriving for specific satellites, resgressing with additional channels: 0.63, 0.83 um in SW

•10.8, 12.0 um in LW