An Early Overview of the Soot Aerosol Aging Study (SAAS) Laboratory Campaign

R.A. Zaveri¹, J.E. Shilling¹, M. Pekour¹, G. Kulkarni¹, D. Chand¹, J. Wilson¹, A. Zelenyuk-Imre¹, A. Laskin¹, S. Liu², A. Aiken², M. Dubey², R. Subramanian³, N. Sharma⁴, S. China⁴, C. Mazzoleni⁴, A. Sedlacek⁵, T.B. Onasch⁶, R. Sellon⁷, M.K. Gilles⁷, and R. Moffet⁸

¹Pacific Northwest National Laboratory, ²Los Alamos National Laboratory, ³Carnegie Mellon University, ⁴Michigan Technological University, ⁵Brookhaven National Laboratory, ⁶Aerodyne Research, Inc., ⁷Lawrence Berkeley National Laboratory, ⁸University of the Pacific

Туре	Experiment Description	Relative Humidity	Nu Exp
Coating	Size-selected soot aerosol was coated with SOA formed from photooxidation of α -pinene in the presence of VOCs and NO _x that were not completely removed by charcoal denuder.	<2%	
Coating	Same as above	80%	
Coagulation	Size-selected soot aerosol was coagulated with pre-existing α -pinene SOA for ~18-20 h.	<2%	
Coagulation + Coating	Highly coagulated Soot + SOA mixture was further coated with SOA formed from photooxidation of α -pinene	<2%	

Office of

Examples of STXM Images of Soot Overlaid on Organic Carbon

5. Absorption Enhancement

Absorption enhancement was estimated as the ratio between particle absorption and the absorption after particle heating in a thermal denuder, assuming 20% particle loss in the denuder.

6. Ice Nucleation Activity

- Bare soot particles efficiently nucleate ice in deposition mode.
- homogeneous freezing saturation ratios to nucleate ice.
- temperature. The derived parameterization for heterogeneous ice

7. Ongoing and Future Work

- Fully analyze data to relate soot mixing state, morphology to absorption enhancement, CCN activity, and ice nucleation activity.
- Perform optical and CCN closure studies
- for use in regional and global models

For more information please contact: Rahul.Zaveri@pnl.gov

 Coagulated soot (for 11 hours, E13) has similar IN efficiency as bare soot. Coated and coagulated + coated soot particles are less efficient or require

Thermally denuded soot particles have similar IN efficiency as bare soot. Ice active surface site densities for bare soot found to be less sensitive to nucleation of bare soot at cirrus conditions can be implemented in models.

Evaluate and improve models of soot mixing state evolution suitable

www.pnl.gov