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« The climate forcing of particles containing absorbing material 3
such as refractory black carbon (rBC) is complex because of S §
the potential for positive and negative radiative forcing effects. gv o
<
) ) ) . DMA >89 cre
» To investigate the effect of chemical composition on CCN AMPLING PROBE o
activity of rBC-containing particles, laboratory experiments T
were conducted in which ethylene flame soot particles were
generated and exposed to OH radicals in a Potential Aerosol c-ToF-AMS
Mass (PAM) flow reactor. Thermal Flow
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» Our hypothesis is that OH oxidation of the soot will convert SMPS
hydrophobic organic coatings to CCN-active hydrophilic
molecules such as carboxylic acids. N
O3 Monitor
* In a separate set of experiments, SOA was condensed on the
soot particles and the enhanced CCN activity was measured.
Figure 1. Experimental setup. Soot particles were generated using a flat burner flame (Cross et al., 2010). A
.o licati f at heri . f rBC taini rticl mini-eductor pulls soot particles from the tip of the flame. Soot was exposed to OH radicals in a Potential
mp! K_:a lons of atmospheric aging of rBl-containing particles Aerosol Mass (PAM) reactor (Lambe et al., 2011a) over OH exposures equivalent to approximately one day to
are discussed. ten days of atmospheric oxidation
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Figure 2. c-ToF-AMS spectra of nascent soot and oxidized soot gigure 3. Mass gf (la) F;A'; and (b) non-Ft’AH orga‘r)\c_st as ‘? funlctilor; OJ Figure 4. Shape factor of aged soot (D, = 200 nm) as
following exposure to OH radicals in flow reactor. exposure. Lolored bars represent upper limits of calculate a function of volume equivalent diameter.
mass increase from addition of -OH and -COOH functional groups
L following heterogeneous oxidation of a surface organic monolayer.

(— SOA CCN Properties

Supersaturation (%)

Figure 5. CCN activation curves of soot particles
following (a) O5 exposure, OH exposure, thermal
denuding and (b) SOA condensation.
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Figure 6. CCN critical supersaturation
as a function of D,,, for aged soot.

1.0d(@) Hygroscopicity (k)
Nasoent Sool 30301 0010001 05
oF Exposare = [OH ime .
M 134107 molec o™ s This work
z v Themmaly cenced 2 . BC + coating 1
o 1.3¢10" mole cm 5 < M coating only
2 © 250" molscam’s ® 044
8 % 49:10° moecon’ s P Maetal., GRL, 2013 )
A (0= 24p0m 5 1 A = E
= A D, =103nm 2
5 © Dp=126nm S 0.34
£ 6 2 a E| Lambe etal, 2011
1] 5 - 8 =0.18"0/C +0.03]
- .
S
@ Nascent sool @ ° 2 1
z |OH Exposure = [OH]time. © 2 T 0.14 ol
Q W 136107 moecom’s| .
Zos ' oot coated with £ ] ey
8 T | O Wi
+_m-Xylene SOA 0.1 e oy 0.0 T T
00 . 10 100 1000 0.0 0.5 1.0
AN AR IR S2T) Dy (nm) [o}¢]

Figure 7. CCN k-values as a function of
O/C of aged soot. Dashed line
corresponds to Ky, = (0.18 + 0.04) x O/
C + 0.03 parameterization from Lambe
etal. (2011b).

~ — Summary

« Heterogenous oxidation of soot leads to
increasing CCN activation as a function of
OH exposure.

« Coating soot with SOA changes particle
morphology and increases CCN activity,
consistent with previous studies (Qiu et
al., 2012, Khalizov et al., 2013).

« Many climate models simulate aging of
BC using overly simplified
parameterizations (e.g. Cooke et al.,
1999) that do not represent recent field
measurements (Moffet & Prather 2009;
Schwarz et al. 2010). Our results can be
used as inputs to models to refine CCN
predictions of BC-containing particles as
a function of atmospheric age and SOA
coating thickness.
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