Effects of NO_x on the Volatility of Secondary Organic Aerosol from Isoprene Photooxidation Pacific Northwest N. L. Ng¹, L. Xu¹, M. Kollman¹, C. Song², J.E.Shilling² LABORATORY

1 Georgia Institute of Technology; **2** Pacific Northwest National Laboratory.

Contact: ng@chbe.gatech.edu

NATIONAL

• No seed, RH < 5%, temp = 25° C

• Thermal Denuder (TD): 60cm long, 11.4mm ID, RT=12s 30/50/70/100/150/200/180/130/110/85/65/40°C

VFR increases with an initial NO/isoprene ratio up to 3. Beyond this ratio, increasing initial NO/isoprene ratio leads to a decrease

Georgia Tech

Experimental Conditions and Results

Evnt	[Isoprene] ₀	[NO] ₀	[OH]	SOA	SOA Yield
схрі.	(hhn)	(hhp)	(TO MOIEC CITE)	(µg/11)	(/0)
1	45.5	<1	1.04	6.3±0.2 ^a	5.0±0.1 ^a
2	78.4	<1	0.82	14.7±0.3	6.7±0.2
3	144.7	<1	0.44	30.2±1.4 ^a	7.5±0.4 ^a
4	97.7	68.1	4.64	19.7±0.4	7.2±0.2
5	91.4	114.8	4.40	19.7±0.8	7.7±0.3
6	114.6	338.2	3.58	27.0±1.0	8.5±0.3
7	105.5	466.2	3.35	10.9±1.5	3.7±0.5
8	100.6	738.1	2.72	4.2±0.4	1.5±0.2

180°C

0.08 -0.04 -0.00 -

0.12 · 0.08 · 0.04 ·

 CO^{\dagger} $COH^{\dagger}C_{2}H_{3}O^{\dagger}$ CO_{2}

100°C

70°C

40°C

Lower f_CO₂⁺; Evenly distributed between m/z 60 and 100

Both VFR and oxidation remain relatively constant. Note: the temporal evolution of the VFR varies with initial NO/isoprene ratios

The volatility and yield of Isoprene SOA vary with NO_x level in a non-linear manner: •Dynamic effect of NO.: ISO₂+NO vs ISO₂+HO₂ MACRO₂ + HO₂/NO₂ \rightarrow 2-MG (key intermediate) $MACRO_2 + NO \rightarrow fragment$ •Oligomerization: more extensive in mixed experiments 1) oligomer length: three/four monomer units vs dimer 2) most frequent monomer: 2-MG ($C_4H_8O_4$) vs acetaldehyde ($C_2H_6O_2$)

Summary

•In this study, we highlight the different roles of NO and NO₂ in SOA formation, dynamic changes between NO and NO₂, and competitive chemistry of RO₂ among various pathways and their effects on aerosol composition and volatility.

•SOA volatility is sensitive to NO_x and varies with NO_x level in a non-linear manner, need to take into account to in future experiments

•SOA aging in laboratory chamber studies is highly dependent

a) Not wall loss corrected

b) Both SOA mass concentration and SOA yield correspond to aerosol growth at equivalent OH exposures of approximately 2*10⁷ molecule*hour*cm⁻³.

Effect of NO_x on growth curve

Simplified Isoprene Oxidation Mechanism

(*m*/*z*85)

The vertical section becomes more pronounced as the initial NO concentration increases.

- Higher generation products
- Reactions between high generation products
- Rapid loss of SOA mass in HO2-dominant experiments

on NO_x levels.

Acknowledgement

The authors acknowledge funding from PNNL's Aerosol Climate Initiative and U.S. DOE's Atmospheric System Research Program. PNNL is operated for the U.S. DOE by Battelle Memorial Institute.

Xu, L.; Kollman, M. S.; Song, C.; Shilling, J. E.; Ng, N. L., Effects of NOx on the Volatility of Secondary Organic Aerosol from Isoprene Photooxidation. Environ Sci Technol 2014, 48, (4), 2253-2262.