Entrainment and Tropical Cumulus Congestus Cloud Growth
Michael P. Jensen¹, Tami Toto³, Katherine Towney³,2,3,4
¹Brookhaven National Laboratory ²DOE Science Undergraduate Laboratory Internship
³State University of New York at Albany ⁴Plymouth State University
Corresponding author: Mike Jensen, mjensen@bnl.gov, (631) 344-7021

ABSTRACT
We use observations from the ARM Climate Research Facility on Nauru Island in the tropical Western Pacific to revisit the growth of cumulus congestus clouds and the factors that control their lifecycle (Jensen and Del Genio 2006, hereafter JD06). We revisit the relative importance of freezing level stability and mid-tropospheric dry layers in limiting the growth of cumulus congestus clouds considering only “terminal” congestus clouds (Luo et al. 2009). Cloud radar-observed Doppler velocities are used to infer the growth stage (“terminal” vs. “transient”) of cumulus congestus clouds. Preliminary results support the original conclusions from JD06 that bulk entrainment rate decreases as a function of congestus cloud-top height and the mid-level humidity is the critical factor limiting congestus cloud growth.

INTRODUCTION
Observations of cumulus congestus at the Nauru Island site (Fig. 1 JD06).
Proposed factors limiting further growth:
1. Differences in cloud depth function of CAPE
2. Weak stable layers at freezing level
3. Intrusions of dry air in the mid-troposphere
(Redelsperger et al. 2002)

PREVIOUS WORK
- Simple “entraining plume” model used to estimate bulk entrainment rate
- 67 cumulus congestus cases at Nauru (1999-2002)
- Investigate impact of freezing-level stability and mid-tropospheric humidity on modeled cloud-top height
- Estimated bulk entrainment rates decrease as a function of cloud-top height

- Little change in level of neutrally-buoyant (LNB) using unstable freezing level sounding
- Significant changes in LNB using moist mid-level sounding

TERMINAL vs. TRANSIENT CONGESTUS
- Snapshot of cloud does not provide lifecycle context
- Luo et al. (2009) use CTH and CTT to infer growth stage of observed congestus
- 42% (over tropical oceans) and 36% (over tropical land) are transient

Question: Can we determine terminal vs. transient from surface-based ARM measurements?
Question: How does this impact the results of Jensen and Del Genio (2006)?

TERMINAL vs. TRANSIENT FROM ARM OBSERVATIONS
- Doppler velocity from vertically pointing cloud radar
- Account for hydrometeor fall-speed using \(V_f = \frac{2\theta}{\rho_g} \)
(Giangrande et al. 2013)

Growth criteria based on:
- Fraction of cloud-top (1 km) pixels moving upward
- Slope of median vertical velocity with height
- Absolute magnitude of mean cloud-top vertical velocity

Of the original 67 cases from JD06 only 9 (13%) were classified as “terminal”

WHAT DO WE DO NEXT?
- Extend to all cases observed at Tropical ARM sites
- Manual vs. automated
- As expected, entrainment rates are overestimated when transient congestus are included

REFERENCES

EXTEND TO ADDITIONAL CASES 1999-2008
Automated routine identified 355 total cumulus congestus cases, 99 (28%) terminal

- Similar trend between entrainment rate and CTH
- As expected, entrainment rates are overestimated when transient congestus are included

- Supports conclusion of JD06 that mid-level humidity is most significant factor limiting congestus cloud-top heights.

ENRICHED CONGESTUS IDENTIFICATION
- Simplified detection and spread algorithm
- ARSCL median CBH < 1 km
- 3 km < CTH < 9 km
- 60 sec. minimum duration
- Radiosonde launch within previous 6 hours

AUTOMATED CONGESTUS IDENTIFICATION
- Estimated bulk entrainment rates decrease as a function of cloud-top height
- Little change in level of neutrally-buoyant (LNB) using unstable freezing level sounding
- Significant changes in LNB using moist mid-level sounding

REFERENCES