

# -axis (Km) 48 342 > 340 338 336 96 x-axis (Km)

### 2. Research questions

We aim to answering the following questions:

- How can we **disentangle** the two forcings?
- 2. What is the **relative importance** of each forcing at different altitudes, from surface to level of free convection?
- What is the effect of the thermodynamic forcing in the inhibition layer encountered by the particles during their ascent?

# Mechanisms for convection triggering by cold pools

#### 6. Methods

We proceed using a Lagrangian Particle Dispersion Model in a RCE oceanic case.

Forcings are distinguished according to: • **Particles' accelerations** from the surface until when they reach level of free convection. • The **age of cold pools** when particles are lifted. The amount of time spent by a particle within a cold pool – **residence time**.

### 4. Tracking cold pools

A novel algorithm is used to track each cold pool and measure its age:

When its  $\theta_0$  is 1.5 K below the horizontal average, a particle is considered in a cold pool and tracked until buoyancy is recovered. When tracking starts, particles are given a clock to measure time spent in cold pool. Connected regions of cells containing cold pool particles are recognized as cold pools.



### 5. Results

#### Averages of particles' accelerations show:

- Mechanical pressure
- Large degree of

#### Cumulative distributions of cold pool ages and particles' residence times support idea that gust front lifting is dominant near the surface:

- younger cold pools, fronts.
- time

Giuseppe Torri, Zhiming Kuang and Yang Tian Earth and Planetary Sciences, Harvard University





To analyze effect of thermodynamic forcing in the inhibition layer, we compare Lagrangian particles with a distribution of idealized parcels: Initial values of parcels are taken from distribution of MSE and  $q_t$  in the environment. Average buoyancy of lifted parcels shows convective inhibition 5 times bigger than Lagrangian particles. Only lifted parcels in high percentiles of the distribution have comparable convective

inhibition to Lagrangian particles.





Age of cold pool (hours)



### 6. Conclusions

The following picture emerges:

- Neither of the forcing is absolutely dominant – particles reach level of free convection through a cooperation of the two mechanisms.
- Mechanical forcing important to **lift** particles from the surface.
- Particles start ascending in moist regions near cold pools but most of their buoyancy is **cancelled** by buoyancy pressure gradients.
- Thermodynamic forcing plays an important role in the inhibition layer by sensibly reducing the convective inhibition.

## 7. Bibliography

Tompkins, A. (2001), J. Atmos. Sc., 58, 1650-1672.

Böing S. J., et al. (2012), J. Atmos. Sc., **69**, 2682-2698.

Schlemmer, L., C. Hohenegger (2014), J. Atmos. Sc., 71, 2842-2858.

Li, Z. et al. (2014), J. Atmos. Sc., 71, 2823-2841.

#### 8. Further information

Torri et al. (2015), Mechanisms for convection triggering by cold pools, Geophys. Res. Let., in press

Corresponding author: Giuseppe Torri torri@fas.harvard.edu