

**Data and results available for ARM/ASR** 

- **1. Correction of NEVZOROV TWC probe in IWC** measurements
- **2.** Gamma fitted ( $N=N_0D^{\mu}e^{-\lambda D}$ ) parameters observed **Particle Size Distribution (PSD)**
- **3. Best-estimated ice cloud microphysical properties:** IWC, Dm, Nc.
- 4. New empirical relationships for remote sensing, such as  $\lambda$  and  $Z_e$ , IWC and  $Z_e$



### Correction of NEVZOROV IVC measurement **Step 1. Using multi-sensor measurements to determine** ice phase of a DCS



**A Rosemount Icing Detector (RID, a sudden** drop in frequency due to SLWC occurrence), King Probe (high and CDP probe *LWC*), accounting for particles with D < 50 µm. **More than 16,000 2DC** and CIP images were manually examined to support the detection of SLWC

**Step 2. Determination of size threshold and exponent NEVZOROV** deep cone is accurate when D < 4000 BF95 b=2.1 **µm [Korolev, et al. 2013] b=2.1** is the optimal ĕ 0.8 exponent for massdimensional relationship [Heymsfield, et al. 2010] 1.0  $\mathsf{IWC}_{\mathsf{Probes}}/\mathsf{IWC}_{\mathsf{NEV}}$ 

## Investigation of Ice Cloud Microphysical Properties of DCSs Using Aircraft in Situ Measurements Jingyu Wang (jingyu.wang@my.und.edu], Xiquan Dong, Baike Xi, and Jingjing Tian, University of North Dakota

6 selected **ICS** cases







# Gamma-type-sizedistribution **No: Intercept of PSD µ:** Dispersion of **PSD** $\lambda$ : Slope of PSD within 10%).

 $N(D) = N_0 D^{\mu} e^{-\lambda D}$ 



### Summary

1) Multi-sensor detection has been adopted to eliminate the super-cooled liquid water (SLW) in the ice dominated cloud layers of DCSs 2) Based on the conclusions of *Heymsfield et al.* [2010] and *Korolev et al.* [2013], the MC3E mass-dimensional relationship was developed: a=0.00365, b=2.1. 3) Gamma fitting to observed PSDs was carried out, and the accuracy of fitted parameters is guaranteed by multi-moment assessments  $(1^{st}: D_m, 3^{rd}: IWC, 6^{th}: Z_e)$ . 4) Empirical relationships were established for  $\lambda$ -Z<sub>e</sub>, N<sub>0</sub>- $\lambda$ , and  $\mu$ -  $\lambda$ . The transition happened at 12 dB indicates changes in microphysical processes, which has been noticed by *Heymsfield et al.* [2002], *McFarquhar et al.* [2007] and *Smith et al.* [2009]. **Future Work:** Better parameterizations taking into account the large variability in different habits to calculate Z<sub>e.</sub> **Reference:** Wang J., X. Dong, and B. Xi (2015), Investigation of Ice Cloud Microphysical Properties of DCSs Using Aircraft in Situ Measurements, J. Geophys. Res., under revision **Acknowledgements:** This work is supported by DOE ASR project. **Special thanks to Drs. Heymsfield and McFarquhar who provided** insightful comments and suggestions

# 202 **Empirical relationships between** $\lambda$ and Z<sub>e</sub>, N<sub>0</sub> and $\lambda$ , $\mu$ and $\lambda$ , IWC and Z<sub>e</sub> λvs. Ze

