Resolution dependence Iin the Zhang-McFarlane deep
convection parameterization and impact of CAPE calculation
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Obijective Predictive capability of QE declines with increasing resolution !
To better understand what drives the resolution dependence CRM-Predicted vs. ZM-Diagnosed Convective MSE Flux for Various Ax
of quasi-equilibrium (QE) based convection parameterizations R T S L S

by analyzing the subgrid-scale vertical transport of moist static 060 - T SRR :‘ ImplicationS' parameterizing convection
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Methodology

| QE-based closures need to consider scales large enough to encompase
- a range of cloud scales or else their predictive capabilities decline.
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=0.866 | Local convective calculations that include non-local, larger scale
2 s information improve the ability to predict the overall convective state
across a range of resolutions. This implies closures should be aware of
regions larger than one column.

Use two CRM simulations to generate meteorological conditions
to drive the Zhang-McFarlane convection parameterization (ZM)
in an offline, diagnostic mode.
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1) Ideal case: a radiative-convective equilibrium configuration

using constant Q1 and Q2 forcing; the shear case from Arakawa 40 - :_
and Wu (2013, JAS, doi:10.1175/jas-d-12-0330.1). ' x |

Details for scales smaller than the QE closure region could be treated
stochastically.

2) Real case: a 28-day realistic maritime tropical case with | - Xiao, H., W. I. Gustafson, S. M. Hagos, C.-M. Wu, and H. Wan, 2015: Resolution-dependent
time_varying bou ndary conditions for the AMIE/DYNAMO period. e T .@> behavior of subgrid-scale vertical transport in the Zhang-McFarlane convection parameteriza-
20 30 40 o 2 4 6 8 10 tion, J. Adv. Model. Earth Sys., accepted.
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base mass flux, M, is
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