Ship-based and satellite remote sensing cloud retrievals consistency and the quantification of aerosol-cloud interactions

David Painemal^{1,2}, Patrick Minnis¹, Christine Chiu³, and Ernie Lewis⁴ ¹ Science Systems and Applications, Inc., ²NASA Langley Research Center, ³ U. of Reading, ⁴Brookhaven National Lab. david.painemal@nasa.gov

1. Introduction

- The northeast (NE) Pacific has been identified as one of the subtropical cloud regimes where microphysical variability driven by aerosols can strongly modify the albedo of the cloud deck [e.g., Painemal ¹⁸⁰ and Minnis, 2012]. Satellite-derived cloud droplet number concentration ¹⁶⁰ in this region has a notorious westward decrease (Fig. 1). - The deployment of the second AMF on the container ship, Horizon 120 Spirit, during MAGIC campaign presents a unique opportunity to investigate the aerosol variability and cloud-aerosol interactions in marine clouds [Lewis and Teixeira, 2015]. - We evaluate the consistency among different remotely sensed cloud and aerosol properties and analyze their applicability to the quantification of aerosol-cloud interactions during MAGIC.

Figure 1: MODIS climatology of cloud droplet number concentration (N_d) over the Northeast Pacific. Black solid lines represent the ship transects during MAGIC.

2. Dataset

Ship-based observations

Liquid water path from a 3-channel microwave radiometer [*Cadeddu et al., 2013*]. <u>Cloud optical thickness (τ) and <u>effective radius (r</u>_e) from a sun-photometer [*Chiu et al., 2012*].</u>

<u>Aerosols: CCN probe</u>, aerosol size distribution from an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), aerosol scattering and absorption coefficient from a <u>nephelometer</u>, and a particle soot absorption photometer (<u>PSAP</u>), aerosol backscatter from a high spectral resolution lidar (HSRL)

Satellite data

 τ , r_e, and LWP from the MOderate resolution Imaging Spectroradiometer (MODIS) and geostationary <u>GOES-15</u> Imager using CERES edition 4 algorithms. MODIS 1km and GOES 4km pixel resolution averaged to a 20 km grid.

3. Results

3.1. Ship-based vs satellite cloud properties

- Collocated satellite LWP and τ agree well with their hourly-mean ship-based counterparts (Fig. 2a and b, respectively).
- Cloud droplet number concentration (N_d) assuming adiabaticity [e.g. *Painemal and Zuidema*, 2013]. This allows to calculae N_d in terms of (LWP, τ), or (LWP, r_e).
- Satellite vs ship-based comparison is best when N_d is derived from τ and LWP. τ is typically a more robust ground-based retrieval than r_e [e.g. *Chiu et al.* 2012].

Figure 2: Scatterplot between GOES-15 (gray) and MODIS (red) satellite retrievals against their ship-based counterparts for a) LWP and b) τ . c) comparison between ship-based and satellite GOES-15 N_d.

3.2. Aerosol proxies

We investigate whether aerosol accumulation mode (N_a , UHSAS), dry scattering (σ_{scatt} , nephelometer), and extinction coefficients (σ_{ext} , nephelometer+PSAP) can be used as CCN proxies (0.4% of supersaturation). Accumulation mode reproduces the CCN variability (*Fig. 3a*) -

- σ_{scatt} and σ_{ext} correlate well with CCN (r=0.9), with a modest effect of absorption (Fig. 3b-c). - York linear fit calculations assuming varying errors (δ) in σ_{scatt} and σ_{ext} and a fixed error in CCN of 10% yield logarithmic slopes between 0.62-0.78, consistent with Shinozuka et al. [2015].

Figure 3: Scatterplot between CCN and a) accumulation mode aerosol N_a , (b) aerosol scattering σ_{scatt} , and (c) extinction coefficient σ_{ext} . Green and red lines in (b) and (c) are the linear regression using the York method with errors in σ_{scatt} and σ_{ext} of 10% and 37% (10 min standard deviation).

 $\partial \ln (N_d)$ We used a simple metric for quantifying aerosol cloud interactions (ACI): $ACI = \frac{1}{2}$ $\partial \ln (\alpha)$

Ship-based N_d vs ship-based CCN

Figure 4: CCN and N_a vs satellite-based and ship-based N_d (a and b-c, respectively).

3.4. Aerosol vertical structure: preliminary HSRL analysis

- HSRL particle backscatter was used to investigate the aerosol vertical structure during July 2013.
- Coupled and decoupled samples: cloud base height and lifting condensation level difference <200 m and > 400, respectively.
- Decoupled boundary layers are deeper and backscatter decreases near the cloud base (Fig. 5a). Strong correlations between backscatter at 150 m and those from levels below 400 m. Reduced correlation near the cloud base for the decoupled profile (Fig. 5b).

Figure 5: a) HSRL mean particulate backscatter, b) correlation between the HSRL backscatter at 150 m at those from level aloft. Red and black are coupled and decoupled cases, respectively.

4. Concluding Remarks

- Agreement between satellite and ship-based cloud properties yield consistent N_d -CCN relationship. - Accumulation mode aerosols and extinction coefficients are adequate CCN proxies over this region. Extinction-CCN slope

- Strong aerosol-cloud interactions consistent with aircraft observations in other marine low clouds regimes.

- Information about the aerosol vertical structure might be important in deep (decoupled) boundary layers.

- Painemal and Minnis, 2012, JGR, *117*, D06203, doi:10.1029/2011JD017120. - Painemal and Zuidema, 2013, ACP, 13, 917-931, doi: 10.5194/acp-13-917-2013. - Shinozuka et al., 2015, ACP, 15, 7585-7604, doi: 10.5194/acp-15-7585-2015

