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Understanding rapid changes in phase partition
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In an Arctic stratiform mixed-phase cloud
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Motivation Observations
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Understanding phase transitions in mixed-phase “ WRF V3.5 (Nested Weather Research and Forecasting)

clouds consisting of liquid droplets and ice

Instrument Specifications Observed/derived quantities

varticles is of great importance because Weather station sensors T, p, RH, horizontal wind : ngﬁldu;ronc:; (gzcd)irtlizc)?\r:'ag-:\iiﬂoggrl\r/} V(\?Fes1t6€CIl< r?]n:r?e)u’l Vsei:|08|3 20m)
I uEEeA e el i e hishit: Radlosondes overy 512 hrs 1. b, RH, Tg, Q. horizontal wind - Microph ysics' Morrison bulk t)\;vo-moment scheme; Zombined ice+snow
radiative effects of clouds. In high latitudes, Ka-band ARM radar (KAZR) 35 GHz Cloud top height, IWC, D, N.., . Py ' ’
. . g particle number relaxed to 1/L
these cloud radiative effects have a crucial W,e N .
- . . Used to study cloud evolution
impact on the surface energy budget and thus High Spectral Resolution 532 nm Cloud base, cloud phase, D, . o
on the evolution of land- and ocean-based ice Lidar (HSRL) LWC, Ry, Nig < ECMWEF radiation scheme
cover. Microwave radiometer 23.8 GHz and 31.4 GHz Column-integrated LWP - Shortwave (SW) and longwave (LW) calculations using Monte Carlo
(MWR) Independent Pixel Approximation

For a springtime low-level mixed-phase
stratiform cloud case at Barrow, Alaska,
observed on 11-12 March, 2013, a sophisticated

Polarimetric X-band scanning Dual-polarisation Horizontal wind profile — Used to determine radiative impacts of a cirrus and the solar cycle
precip. radar X-SAPR

+» MACC (Monitoring Atmospheric Composition and Climate)

combination of instruments and retrieval TSI 3563 Nephelometer 450 nm, 550 nm, 700 nm Total aerosol scattering and _ _ _ _

methods is combined with multiple modeling backscattering - Chemical transport model including 12 aerosol species
perspectives to determine key processes that Particle Soot/Absorption 467 nm, 530 nm, 660 nm Aerosol absorption ~ Used to estimate aerosol transport and aerosol properties
control transitions in cloud phase partitioning. Photometer (PSAP) < HYSPLIT

The interplay of local cloud-scale vs. large-scale TSI 3010 Condensation 10 nm to 3 ym Aerosol number concentration - Hybrid Single-Particle Lagrangian Integrated Trajectory model
processes is considered. Particle Counter (CPC) - Used to estimate air mass origins via back trajectory calculations

Radar and lidar observations Evolution of cloud properties
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Aerosols and advection

Factors influencing phase transitions

Atmospheric profiles

Aerosol propertles Three main factors were found to contribute to the abrupt change in phase partitioning for this case:
1. Large-scale advection of different air masses with different moisture content and aerosol
0530 UTC 201_3/03/11_1 1130 U_T_C 201:’3/03/11_1 1730 UTC 201_3/03/']1_1 E_m/s i 3000 ] . . . . . ) ] ]
00 06510 1820 25 00 0510 15 20 25 L 00 05 10 15 20 25 i 25001 concentrations played a major role. During the time of highest ice and liquid water contents, the
5 ' : g ot airmass over Barrow had a relatively high aerosol concentration and was supported by moist
16 : advection at cloud level from W-SW. This airmass was eventually replaced by a drier

ﬁ:: { s southeasterly flow characterized by a reduced aerosol load as well as decreasing cloud and

= B £ 0s. surface temperatures and decreasing water vapor supply.

20 N 30 2. Cloud-scale processes, specifically the cloud-surface thermodynamic coupling state, changed at
o E ' 0 the time of the airmass transition. Prior to the transition a higher IWP was maintained when the
0.4 : \ 25 . .

02 ;7 | 2] cloud was decoupled from the surface with a relatively dry near-surface layer below the
I e toaasanni s vans o ol A oL e =" cloud. This structure likely supported sub-cloud sublimation for ice crystals such that IN were not
Temperature [°C] Temperature [°C] Temperature [°C] é;“’; 0— . . . .
: 0 U0 20131081 20 UTC 20130018 o0t LT 0131010 . . lost to the surface and may have continued to be available to the cloud via IN recycling. After

., 00 B ES s 0055 "0 15 %28 b5, 00705 10 1528 s "o T 74 te To 20 % © 5 4 6 b fo 12 14 to 1o 20 72 26 the transition the cloud became coupled to the surface with high levels of moisture extending

é 2.0 . 2013/03/11 201Sgou3r/1STC l . . . . . .
E 18] 18] : o down to the surface. As a result precipitating ice, including the limited supply of IN, was lost from
I 5 5 i " Surface aerosol properties. (a) particle concentration for particles larger
- :j : |- than 10 nm (CPC), (b) aerosol absorption (PSAP), and (c) aerosol ¢ the CIOl_Jd sys_tem to the surface. _ _ _ _ _ o
Y o E scattering (nephelometer). * 3. WRF simulations suggest that the residence time of ice particles, which is linked to local-scale
R =10 o Back tra'ectories dynamics, was also important in the change of phase partitioning. Simulated IWP was found to
% £ 08 208 N J . " be higher during times of strong updrafts that dominated during the early part of the case. After
8 Zj Zj * % . o the transition updrafts weakened and ice crystals fell more quickly from the cloud system.
g 0.2; 0.2 : e : N ‘ §,
NS m 8| z T . . . .
9 ~7 9 ! 'S > § a
R et e ) e e b : T The radlatllve ghleldlng of a cirrus on 12 March as wgll as the_ influence of the solar cycle were found
H Termperature [°C] Temperature [°C] Temperature ['C] P : - to be of minor importance for turbulence modulation in the mixed-phase cloud (not shown), and thus
: ‘.'t - Vertical profiles of temperature (black solid line), dew point temperature (black ‘.; - 3 - |ike|y did not p|ay key roles in the transition.
_" .. dashed line), water vapor mixing ratio (grey solid line) and horizontal winds (barbs) » | B @ :
",'.:.: observed by radiosoundings at Barrow, Alaska. Horizontal gray dashed lines * g’ g — ae® _ _ _ _ _ _ _
RASNE ;epresentdliqluid(;ctl)oud bajehs ﬁbser\ieddby ceilomete; fLayeEA ;gRtween the liquid(; or g et <4 I | 8 — Observations of aerosol properties, including IN concentrations and vertical profiles of aerosol
S8 inat ' t t timat t * 5 = - . . . . . . .
N byareyshading, oy PORE PSSR R FRCR AP TR g I — e — ** particle concentrations are ultimately needed to unravel the role of aerosol-cloud interactions in
. :g‘ s B — . driving transitions in cloud phase partitioning.
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