Towards Constraining the Aerosol-Cloud Radiative Effect

Graham Feingold¹, Allison McComiskey¹, Takanobu Yamaguchi^{1,2}, Elisa Sena^{1,3}, Jan Kazil^{1,2}

¹NOAA Earth System Research Laboratory; ²CIRES, University of Colorado, Boulder; ³University of São Paulo, Brazil

Key Questions:

- Can top-down approaches to quantifying aerosol-cloud radiative effect be used in
- concurrence with bottom-up ACI metrics to constrain aerosol-cloud radiative forcing? How does the relative Cloud Radiative Effect-Albedo-Cloud fraction (rCRE-A- f_c) relationship
- vary under different meteorological conditions and aerosol concentrations? What controls the rCRE-A- f_c relationship?
- Do rCRE-A- f_c relationships vary as a function of resolution or scale?

Key Results:

- rCRE-A- f_c relationships are remarkably robust;
- Co-variability of meteorology and aerosol influences detectability of aerosol effects on cloud and shape of A, f, relationship!
- Strong case for routine LES accompanying routine observations (LASSO) for understanding interconnected aerosol and meteorological processes and their influence on rCRE.

I. Approaches to quantifying ACI in cloud systems

The Top-down Approach:

Quantify Radiative and cloud macroscale properties

Cloud field Properties: Cloud fraction, f_c Liquid water path, L Optical depth, auCloud albedo, A_c Cloud depth, H Relative cloud radiative forcing, rCRE

 $F_{sw,all}$ rCRE = 1 - $F_{sw,clr}$

 $F_{sw} = \text{downwelling}$ shortwave flux

2. The importance of co-variability between meteorology and aerosol

Example from LES: Two sets of simulations (~100) differing only in co-variability of initial meteorology and aerosol conditions **Set I**: regular grid spacings in 6-D parameter space; many runs vary N for fixed met conditions Set 2: Latin Hypercube Sampling of 6-D parameter space; maximizes minimum distance between parameters for

optimal coverage

