
Figure 4 illustrates a preliminary analysis of the feasibility of using the calibrated sky 
brightness noise from the zenith-pointing W-band ARM Radar (WACR) to estimate LWP 
during precipitation. An power fitted curve presents the following relationship: 
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Column integrated liquid water path (LWP) measurements are a critical parameter for cloud 
and precipitation studies. However, our ability to measure the LWP when a measurable 
amount of precipitation reaches the ground is limited. Here, first, we investigate at what 
point, the MWR LWP measurements become unreliable. Second, we investigate the potential 
of radar-based techniques to provide an estimate of the LWP using Path Integrated 
Attenuation (PIA) techniques based on multi-wavelength radar observations that account for 
the wet radar radome effects. Furthermore, a preliminary analysis is presented of the 
feasibility of using the calibrated sky brightness noise observed at every time profile by the 
W-band ARM Zenith-pointing Radar (WACR) to estimate LWP during precipitation. 

ABSTRACT	
  

LWP, defined as the integral of liquid water content, is an important quantity in 
understanding radiative transfer in the atmosphere. On one end of the spectrum (thin 
clouds), accurate measurements of low LWP values are needed to accurately assess the 
radiative effect of clouds and parameterize their propensity to precipitate (e.g., 
autoconversion schemes). A number of retrieval techniques that combine active (e.g., dual-
wavelength radar) and passive (infrared and microwave) techniques have been developed to 
improve our ability to measure low values of LWP. On the other end of the spectrum (deep 
precipitating clouds with high liquid water amount), the ARM program upgraded its radar 
facilities with the intent to measure precipitation. A number of radar-based techniques that 
can provide estimates of the rain water path and in-situ ground-based sensors that measure 
rain rate and raindrop size distributions at the surface are available. However, our ability to 
measure the LWP when a measurable amount of precipitation reaches the ground is limited. 
During precipitation, microwave radiometer (MWR) measurements become unreliable due to 
wetting of the sensor. In addition, non-Rayleigh effects can introduce biases to the 
measurements. The lack of LWP measurements will hinder our ability to conduct closure 
studies and investigate precipitation efficiency at the ARM sites.  
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Attenuation accrues when a radar beam moves downstream, passing through 
hydrometeors, due to absorption. The beams of shorter wavelength radars, such as the 
WACR, attenuate more rapidly than those of long wavelength radars such as the RWP. 
Integrated Attenuation (PIA) thus is directly proportional to the total liquid water content 
in a column, which is LWP.  

PIA = ReflectivityRWP – ReflectivityWACR |120m below common cloud mask top when rain rate > 0 

The green line in Figure 1(f) is the time series PIA for the events studied on 20150222. 

At the same time, the radar also receives energy from backscatter. Backscatter cross 
section ( log(σb(mm2)) ) is typically  orders of magnitude smaller than the actual particle 
physical cross section. The emission of radiation from backscatters provides the mean 
noise power received by radar. 

mean noise power = mean(total signal power outside of cloud)|when rain rate > 0 

Receiver noise is the total sky noise power received prior to spectrum computation. Figure 
1(g),(h) shows receiver noise and mean noise over the same time scale in dBZ. 

LWP measurement from the MWR becomes ambiguous when precipitation presents. Moreover, 
the LWP value does not represent a valid measurement during heavy precipitation because of 
sensor saturation (reaching its max value) or water on the sensor window. Figure 1 (c),(d) and 
Figure 2 present LWP measurement from MWR aligned with rain rate from disdrometer, in 3 
precipitation during GOAMAZON Campaign, at Manaus, Brazil (3 6' 47" S, 60 1' 31" W).  
Figure 3 illustrates when the MWR stops reporting LWP during precipitation by introducing 
probability of detection  PoD =            . Assuming POD>=0.66 is acceptable, which 
corresponds to a rain rate of 0.25 mm/hr, the MWR LWP has more than a 34% failure rates. 
During the 3-day case study, a majority of surface rainfall (70%) fell into that category. 
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Figure	
  1:	
  Time	
  series	
  comparison	
  of	
  mul=-­‐wavelength	
  radar	
  and	
  PIA	
  at	
  
MAO,	
  Brazil,	
  20150222,	
  during	
  GOAMAZON	
  Campaign.	
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Figure	
  3:	
  3-­‐day	
  (20150124,	
  
20150201,	
  20150222)	
  case	
  study	
  
at	
  MAO	
  site.	
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• Statistical analysis reveals that MWR LWP measurements are not available during the 
majority of surface rainfall events. This result motivated the search for an alternative 
method to estimate LWP when MWR fails. 
• The PIA technique is applied successfully to estimate radar attenuation. PIA show 
reasonable agreement with LWP, however additional filtering of the data is needed to 
reduce the scatter. One drawback of the PIA technique is that requires that the WACR or 
KAZR to penetrate the liquid layer of the precipitation.  
•WACR sky brightness noise as well as mean noise show reasonable relationship to LWP. 
Both noise vs. LWP relationships show promise in estimating LWP when traditional MWR 
data is not available, however there is considerable scatter.  

X stands for LWP or rain rate 
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Figure	
  4:	
  PIA,	
  receiver	
  noise	
  and	
  mean	
  noise	
  power	
  VS.	
  LWP	
  and	
  Rain	
  Rate	
  
at	
  MAO	
  site,	
  20150222	
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