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Convective precipitation biases consistent across a range of models and microphysics schemes have several complexly interacting causes including hydrometeor The role of amplified mesoscale circulations in producing model precipitation
properties, vertical velocity, microphysical processes, and mesoscale circulations. To eliminate these biases requires constraining all of these causes, which can only biases and the causes of amplification will be further explored. Measurement
be done by strategically observing deep convective processes with radars, gathering in situ measurements from aircraft, and performing representative comparisons strategies targeting convective processes will be further developed and potentially
between model output and observations that take into account the non-determinism of deep convection and its wide variety of properties around the world. tested ahead of the 2018-19 CACTI field campaign in Argentina.
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