## ARM Aerial Facility: UAS Capability Development



CLIMATE RESEARCH FACILITY

Beat Schmid, Fan Mei, Pete Carroll, John Hubbe, Mike Hubbell, Albert Mendoza - PNNL

### DataHawk Small UAS Developed by Dale Lawrence, Univ. Colorado

- Wingspan: 1 m
- Weight: ~700 g
- Payload: ~ 80 g
- Electric propulsion
- Duration: up to 60 min
- Rear folding propeller
- 11-16 m/s airspeed
- Power: LiPo battery
- Cost: ~ \$800
- Airframe: EPP foam
- Autopilot: custom (CUPIC)
- Autonomous flight control with user supervision, real time changes in flight profile
- Flight termination mode prevents fly-away and conflict with other air traffic

### DataHawk sUAS (PNNL Operations)

- October 2015: Training near Boulder, CO
- December 2015: 4 Units delivered to PNNL
- March and May 2016: PNNL flights in Pendleton, OR UAS Range
- June-Aug 2016: 6 weeks of flights at Oliktok Point, AK
- May, Aug, Oct 2017: 4 weeks of flights at Oliktok Point, AK







Small, low-cost, safe,

easy to operate, high-

resolution sensing system





#### DataHawk Sensors

| Sensors                                        | Status                                                                          | Comments                                      |
|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|
| Slow temperature and humidity sensor           | Calibrated at CU (Univ. of Colorado) Compared with hand-held temperature sensor | Need routine calibration procedure            |
| Cold wire 100 Hz temperature sensor            | Calibrated against the slow T/RH sensor                                         | Will be replaced by 3-wire probe during FY17. |
| Upward and downward looking thermopile sensors | Calibrated using temperature controlled water bath.                             | Developing routine for ground check           |
| Pitot tube (pressure measurement)              | Calibrated at CU                                                                | Need additional wind reconstruction.          |
| Platform position/velocity/attitude            | Characterized at CU                                                             | Involved in improved wind reconstruction      |

#### Future plan:

- 1. Collaborate with Prof. Lawrence's group at CU for wind reconstruction.
- 2. Improve temperature sensor calibration.

### Group 3 UAS "ArcticShark" Developed by Navmar Applied Sciences Corp

- Wingspan: 6.5 m
- Length: 4.4 m
- Empty Weight: 194 Kg
- Max Gross Take-off Weight: 284 Kg
- Max Payload: 45.5 Kg
- Payload Power: 2,500 W
- 4 Underwing Hardpoints
- Max Altitude: 4.6 5.5 Km
- Endurance: 10-12 hours
- Iridium SatCom (Beyond-Line of Sight Ops)







### Timeline ArcticShark UAS (updated 1/24/2017)

| Milestone                                                  | Date           |
|------------------------------------------------------------|----------------|
| Maintenance technician training, Rome NY                   | Nov/Dec 2016   |
| Pilot training NASC, Rome, NY                              | Nov/Dec 2016   |
| Delivery of ArcticShark, Pendleton, OR                     | Feb 2017       |
| Complete acceptance test flights, Pendleton, OR            | Mar 2017       |
| Complete pilot training, Pendleton, OR                     | Mar 2017       |
| Additional training flights, Pendleton, OR                 | Jun & Aug 2017 |
| Complete integration of initial payload, PNNL              | Aug 2017       |
| Engineering/test flights with small payload, Pendleton, OR | Sep - Nov 2017 |
| Complete integration of more complete payload, PNNL        | Apr 2018       |
| Science/engineering flights, Oliktok, AK                   | May & Aug 2018 |
| ArcticShark available for missions proposed, Oliktok, AK   | May - Aug 2019 |

## Existing and planned ArcticShark UAS Instrumentation

| Instruments      | Measurement                                                   |
|------------------|---------------------------------------------------------------|
| SPN-1, MFR, IR20 | Radiation (broad band and spectral, SW and LW)                |
| CDP              | Cloud drop/ice crystal size distribution                      |
| ACCESS           | Aerosol number, size distribution, absorption, filter sampler |
| POPS             | Aerosol size distribution                                     |
| AIMMS-30         | Atmospheric state and thermodynamics, winds and turbulence    |
| TBD              | Passive remote sensing (imaging any wavelength)               |
| TBD              | Active remote sensing (radar, lidar)                          |
| Li-COR           | Trace gases (CO2, H2O)                                        |
|                  |                                                               |













# Comparing miniaturized with traditional size instruments aboard the Gulfstream-1



Brechtel MCPC 1710 Weight: 2.7 Kg



TSI CPC 3772 Weight: 6 Kg





Handix POPS Weight: 0.8 Kg



PCASP Weight: 20 Kg



For more information, contact:

Beat Schmid, PNNL

beat.schmid@pnnl.gov

(509) 375-2996