

Macro-physical Properties of Shallow Cumulus from Integrated ARM Observations: Development of a New Data Product for Model Evaluation Pacific Northwest NATIONAL LABORATOR

Erin Riley¹, Jessica Kleiss¹, Charles N. Long², Laura Riihimaki³, Larry K. Berg³, Evgueni Kassianov³ ¹Lewis and Clark College ²Cooperative Institute for Research in Environmental Sciences ³Pacific Northwest National Laboratory

Motivation

- Information about cloud field inhomogeneity is needed to assess differences between cloud statistics obtained from model simulations and observations.
- Can this information be obtained from Total Sky Imager (TSI) data with wide field of view (FOV)?
- Does level of agreement between cloud statistics obtained from *narrow*- and *wide*-FOV data depend on cloud field inhomogeneity?

Fig. 1 TSI image (left) and decision image (center) with clear-sky (blue) and cloudy (white) pixels and areas, which represent 100° (green circle) and 160° FOVs. For our study, the decision image is divided into rotating quadrants (right) with Q1 centered on the solar azimuth angle.

Fig. 2 Time series of ARSCL cloud fraction (CF), TSI fractional sky cover (SCV) with 100° and 160° FOVs (top), TSI SCV for three quadrants (middle), and the corresponding root-mean-squared difference (RMSD) (bottom) for a given day (05-15-2006).

Data

- We apply data from (1) **TSI**, (2) Active Remote Sensing of Clouds (ARSCL) and (3) 915 MHz Radar Wind Profiler.
- The selected data represent 54 days (2005-2008) with shallow cumulus at the SGP site.
- We apply cloud classification from the ShallowCumulus evaluation VAP [1] for our data selection.
- In contrast to wide-FOV TSI data, ARSCL and Wind Profiler data represent *narrow-FOV* observations.

1. https://www.arm.gov/data/data-sources/shallowcumulus-127

2. Kassianov, E. & Long, C. Cloud Aspect Ratios Derived from Total Sky Imagers Data: Case Studies. (2005).

Summary

We introduce a simple approach for acquiring \bigcirc information about cloud field inhomogeneity from high-resolution ground-based TSI images. We apply our approach to segregate days with cumulus \bigcirc clouds into three groups with different "uniformity" scores, which define cloud field inhomogeneity. We demonstrate that level of agreement between \bigcirc cloud statistics obtained from **narrow**- and **wide**-FOV data have a noticeable dependence on (1) cloud field inhomogeneity and (2) averaging period.

Fig. 4. Time series of ARSCL cloud base height (CBH), cloud top height (CTH), CTK and CCL (top); CAR from ARSCL and TSI [2] observations (bottom) for a given day (05-15-2006).

Approach

- Analyze TSI data to examine cloud field inhomogeneity. Define SCV for three rotating quadrants (Q2-Q4; Fig.1). Calculate root-mean-squared difference (σ_{scv}) between quadrant-mean SCV and SCV(100°) (Figs.2,3) for days with different "uniformity" score (Table 1).
- Analyze ARSCL/Wind Profiler data to obtain cloud macro-physical properties, such as cloud fraction (CF), chord length (CCL), thickness (CTK) and cloud aspect ratio (CAR=CTK/CCL) (Fig 4).
- Compare TSI- and ASCRL-based cloud macro-physical properties for cases with different (1) "uniformity" score and (2) averaging periods (Figs.5,6).

