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Atmospheric aerosol particles influence the Earth’s radiative balance conditions, errors in CCN concentrations and optical properties were The model was applied to simulate BC aging
directly by absorbing and scattering the incoming solar radiation and examined with respect to the level of detail of the aerosol mixing state observed during the 2010 CARES field /M
indirectly by serving as cloud condensation nuclei (CCN). Aerosol optical and representation. campaign (Zaveri et al., 2012).
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" Light absorption by black carbon (BC) particles depends on their size and
how thickly they are coated with non-refractory species such as : MOSAIC-mix with
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