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3. OBSERVATIONS AND WRF 4. RESULTS

The two-way feedback between convective updrafts and cold pools has been suggested as a radar reflectivity - 20111001.000528 |
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critical mechanism for the shallow-to-deep convective transition and maintenance of deep CONTIGUOUS CONVECTIVE ECHOES
convection. The unified convection scheme (UNICON) is an existing cumulus parameterization - Powell et al. (2016) algorithm (modified Steiner
scheme that explicitly represents this interaction. This study uses ARM datasets to constrain et al. 1995) applied to 1-km SPolKa and 500-m
the two-way feedback process between convection and cold pools simulated by UNICON. WREF reflectivity at 2.5 km height
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Isolated convective core
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UNICON produces the lag, but
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CCE/CCU sizes increase
with cold pool fraction in
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* Decayed by Surface Flux and Entrainment at the PBL Top
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contiguous convective 20111106.2000 20111107 0600 » SPolKa and WREF cold pool fractions lag precipitation by ~1-2 h; lagging reasonably
SPolK WRF UNICON echoes (CCEs) and | | | _ ' represented in UNICON but cold pools tend to sustain longer (possibly due to lack of
Offtd contiguous convective Cold pools V- horizontal advection)

Organization/ Srecipitation updrafts (CCUs) . - e o 5 ’ . > SPolKa CCE size distributions vary similarly to WRF CCE sizes, which vary similarly to WRF
plume radius Cold pool statistics . oy " A - ' - CCU sizes - all increase with increasing cold pool fraction
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cold cold downdraft (Feng et al. ) _ N RN ' T R » Future work will extend the analysis to entire AMIE/DYNAMO period, examine the sensitivity of
pools pools LY 3 ) @ R = UNICON results to varying evaporation parameters (for example), evaluate cold pool

properties in UNICON, and extend this analysis to midlatitude continental cases (MC3E)
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