

Biomass Burning and Black Carbon Aerosol from African Sources

Allison C. Aiken¹, Arthur Sedlacek², Stephen Springston², Thomas Watson², Manvendra Dubey¹, Paquita Zuidema³, Adeyemi Adebiyi³, Connor Flynn⁴ ¹Earth Systems Observations, Los Alamos National Laboratory; ² Brookhaven National Laboratory; ³University of Miami; ⁴Pacific Northwest National Laboratory

Climate Impacts of Biomass Burning (BB) Emissions and Black Carbon (BC) Aerosol

- Biomasss Burning: Large source of Carbon to the atmosphere
 - Particles: Black Carbon (BC), Organic Carbon (OC), Brown Carbon (light-absorbing in the visible and UV)
 - Gases: CO, CO₂
 - Largest BC source globally
- BB is the largest source of BC globally
 - BC: most light absorbing particle in the visible region
 - 6-9 Tg/yr with up to ~0.6 W m⁻² warming (*IPCC*, 5AR)
 - 2nd most important in global warming, most uncertain, underestimated - (Bond, JGR, 2013) • Expected to increase in the future due to increased drought and extreme events

AMF1 AOS and MAOS LASIC 2016 Preliminary Results

- June October, 2016 (1st BB season data)
 - 5 months of 1 minute data
 - Submicron aerosol (<1 µm diameter)
 - Aerosol number, CO, and particulate absorption in the visible range have similar time series trends

Plume Analysis

- Submicron bulk chemical aerosol
 - OA and rBC dominate the submicron mass and have similar mass concentrations with $OA/rBC \sim 1$ in the plumes

- BC directly warms the atmosphere, OC cools
 - Mixtures in BB with complex climate impacts (indirect effects: clouds, precipitation)
 - BB emissions age in time changing properties of the aerosol (physical, optical, chemical)
 - BC from BB has enhanced absorption due to coatings - (S. Liu, GRL, 2014; D. Liu, Nat Geo, 2017)

SEM Images of 4 Types of BC in BB

China et al., Nat. Commun., 2013

Layered Atlantic Smoke Interactions with **Clouds (LASIC) Campaign**

Biomass Burning

- Largest plumes of the season arrive at ASI in August 2016
 - Submicron number concentration of ~ 1000 #/cc
 - Absorption Coefficients reach 30 Mm⁻¹
- Back trajectory analysis (A. Adebiy, Q J Roy Meteor Soc, 2016) • Southern African sources (e.g., Namibia, Angola) with ~ 1 week atmospheric transportation time
- Active fires from August 6 17 (MODIS / VIIRS) show numerous fires across the region

- Aerosol Optical Properties
 - Absorption Angstrom Exponent (AAE)
 - Values ~1 indicate most of the absorbance is from BC
 - Higher observed values would indicate BrC

- (Saleh R. et al., Nat Geo, 2014)

- Single Scatter Albedo (SSA; not shown)
 - Values ≤ 0.85 indicate a mixture (internal/external)
 - Lower in the plumes (higher BC fraction)

- Southern Africa: Largest BB source
 - Fuels: Land clearing wood and grassland fires
 - BB Season peaks from June November
- LASIC Measurements
 - Ascension Island is in the Southern Atlantic Ocean
 - June 2016 October 2017
 - Sample 2 Southern African BB Seasons
 - PI: Paquita Zuidema
- AMF1 Aerosol Observing System (AOS) and Mobile AOS (MAOS): *In situ* aerosol measurements at the surface
 - Particulate: number, size, optical properties, Black Carbon (BC) content, non-refractory chemical composition, hygroscopicity and water uptake
 - Trace Gas: Nitrogen Oxides, Combustion tracers (CO, SO₂), Ozone, Volatile Organic Compounds (VOCs)

- Non-refractory submicron aerosol mass is dominated by Organics (OA) in August during the peak BB season
 - Preliminary PMF analysis of the OA (not shown) indicates the OA to be aged/oxidized with minimal fresh BB (BBOA) similar to previous (aged BB) from Mt. Bachelor, CA

- (S. Zhou et al., ACP, 2017)

rg=86.57%

SO4=11.1%

NO3=1.77%

Chl=1.01%

VH4=-0.47%

• Is the fuel (likely grasses/savannas) more flaming? • High BC per total aerosol mass

Comparison with Laboratory BB and US Wildfires

- Laboratory BB data (shown in color based on OC Mass Ratio)
 - Sampled flaming to smoldering conditions with a large range of fuels, including African grasses
 - Dominant trend for near-field emissions, optical properties of the aerosol depend on fire conditions

- (S. Liu et al., GRL, 2014)

- Ambient BB from SW US Forest Fires
 - Las Conchas and Whitewater Baldy in New Mexico
 - Aged from < 1 day to < 4 days

(Zuidema, BAMS, 2016)

