

Shallow Cumulus Cloud-Base Vertical Velocity I: Difference Between Simulations and Observations

a Climate Model Development and Validation (CMDV) Project

Andrew Vogelmann¹, Damao Zhang¹, Satoshi Endo¹, Pavlos Kollias^{1,2}, Katia Lamer³, William Gustafson, Jr⁴, Heng Xiao⁴, Mariko Oue², and David Romps⁵

¹Brookhaven National Laboratory, ² Stony Brook University, ³The Penn State University, ⁴Pacific Northwest National Laboratory, ⁵Lawrence Berkeley National Laboratory

Corresponding author: Andy Vogelmann, avogelmann@bnl.gov, (631) 344-4421

Summary

Observations from the Doppler Lidar network at the ARM Southern Great Plains (SGP) Facility are used to benchmark first-light, ensemble, large-eddy simulations by the ARM LASSO Project. Results suggest that simulations significantly underestimate the occurrence of downdrafts at cloud base, which may be important to parameterization and model improvement studies.

4. LASSO Large-Eddy Simulations

- □ LES ARM Symbiotic Simulation & Observation Workflow
 - Complements ARM observations with routinely run LES
 - See Gustafson et al. poster #77
 - Breakout Session Thursday 10:45 am 12:45 pm

6. Sensitivity Studies: WRF & SAM

11 June: WRF and SAM

1. Motivation

Continental boundary layer clouds are important because of their impact on the lower atmospheric energy and moisture budgets.

Model parameterizations are challenged by these clouds partly since small-scale turbulence & convection are not well represented.

Large-eddy simulations (LES) resolve most small-scale dynamics and are frequently used to develop & test cloud parameterizations.

Observational constraints are needed for critical parameters such as cloud-base vertical velocity and cloud cover to perform model evaluation and adjustments.

2. Objectives

- Derive statistical, observed constraints at the ARM SGP Facility
 - Network of 5 Doppler Lidars \rightarrow Regional representation
 - Classify shallow convection as being active or forced

Webpage: https://www.arm.gov/capabilities/modeling/lasso

□ LASSO Features

- Constrained and evaluated with ARM observations
- Ensemble forcings: 3 Sources plus different forcing scaled
- Routine simulations yield a library for research
 - Enable statistical approaches beyond single-cases
 - Provide information for modelers to reproduce the LES
- Run at the SGP for shallow convection \rightarrow expand later

□ LASSO Simulations and Analysis

- Use 11 days from the LASSO Alpha2 release for 2016
- 14.4 km domain, Doubly periodic lateral boundaries
- WRF simulations complemented with SAM simulations
- Control case:

0.06

0.04

0.02

 $\mathbf{\cap}$

C1

SE

- \circ $\Delta x=100$ m, $\Delta z=30$ m in boundary layer (BL)
- Forced with ARM VARANAL advective tendencies and observed surface fluxes

5. Results for Cloud-Base Vertical Velocity

Sensitivity of Vertical Velocity to

2

3

CBH+2

CBH+1

CBH-1

CBH-2

CBH

20 July: WRF and SAM

- Assess ability of large-eddy simulations to reproduce statistics
 - Use newly available ARM routine large-eddy simulations

3. ARM Observations

- **Doppler Lidar data**
 - 5 sites: May-Sept. in 2016 and 2017
 - Cloud base determined from lidar backscatter •
- □ Fair-weather shallow cumuli identification
 - Follows Lamer and Kollias (2015), similar to Zhang and Klein (2010, 2013)
 - Cloud fraction between 3-60%
 - Only include boundary layer clouds
 - Residual layer clouds are removed •
 - No stratiform clouds
 - No deep convection
 - No rain at central location for day
- □ Cumuli active vs. forced identification at Central Facility
 - Active if radar cloud thickness \geq 300 m

11 June: SAM Horizontal Resolution

Observed Two-Year Statistics and Two LASSO Case Days

See Endo et al. poster #218 for numerical sensitivity studies related to these results.