Aircraft Observations of Aerosol in the Manaus Urban Plume and Surrounding Tropical Forest during GoAmazon 2014/15

John E. Shilling1, Mikhail S. Pekour1, Edward C. Fortner2, Paulo Artaxo3, Suzane de Sá4, John M. Hubbe1, Karla M. Longo5, Luiz A.T. Machado6, Scot T. Martin4, Stephen R. Springer7, Jason Tomlinson1, Jian Wang7

1PNNL, 2Aerodyne, 3University of Sao Paulo, 4Harvard University, 5NASA, 6INPE, 7BNL

Overview and Comparison of Wet and Dry Season Aerosol

- Absolute loading of species is significantly higher in dry season.
- Fractional composition is remarkably constant between seasons.
- Organic aerosol chemical composition varies with season.
- Organic H:C is similar between season.
- Organic O:C is significantly higher in dry season, indicating more oxygenated aerosol.

Evolution of the Manaus Plume

- March 13, 2014 is a golden day for studying plume aging.
- G-1 made successive plume crossings downwind of Manaus.
- Flight captures first 4-5 hours of plume aging.
- Sulfate enhanced in plume, particularly the southern edge.
- Aerosol loading is enhanced in the plume, particularly OA.
- Isoprene depleted in the plume, though still present.
- HOA correlates well with CO.
- OOA correlates well with ozone.
- OA becomes more oxidized with aging.
- ΔHOA/ΔCO decreases with aging.
- ΔOOA/ΔCO increases with aging, indicating SOA formation.
- Loss of HOA is balanced by formation of OOA resulting in constant ΔOA/ΔCO.

Motivation

- Modeling studies have suggested biogenic SOA formation is enhanced by anthropogenic emissions.
- Field studies have found evidence for this enhancement.
- GoAmazon 2014/5 campaign is an opportunity to investigate this process.
- Manaus urban plume is transported into the pristine background of the Amazon tropical forest.

GoAmazon G-1 Flight Domain and Strategy

- G-1 characterized the Manaus plume as it was transported downwind and interacted with biogenic emissions.
- IOP1 – Wet Season, February 15th – March 26th 2014
 • 16 Flights
- IOP2 – Dry Season, September 1st – October 10th 2014
 • 19 Flights

Acknowledgements

This research was supported by the U.S. DOE’s Atmospheric System Research (ASR) program via the ICLASS SFA. The GoAmazon 2014/5 field campaign was supported by the DOE’s Atmospheric Radiation Measurement (ARM) program.

Conclusions

- Aerosol loading much higher in dry season.
- OA was more oxidized in the dry season.
- On March 13, 2014 flight, ΔHOA/ΔCO values decreased from 17.6 to 10.6 μg/m³ ppmv⁻¹ after 4-5 hours of aging.
- ΔOOA/ΔCO increased from 9.2 to 23.1 μg/m³ ppmv⁻¹.
- Loss of HOA is balanced by formation of OOA resulting in constant ΔOA/ΔCO.

For More Information Contact: John Shilling
John.shilling@pnnl.gov
Shilling et. al., 2018, ACPD, doi.org/10.5194/acp-2018-193