

Seasonal Variation of

Aerosol Size Distribution

Key Processes of At and Ac modes

Minor SSA contribution to At – Ac mode

• SSA estimation by production flux curve and N_{LA}

- Marine low clouds are important in climate predictions, and are particularly susceptible to perturbations in aerosols
- It is imperative to understand marine boundary layer (MBL) aerosol properties both under natural condition and the changes associated with continental emissions.
- ENA has strong but poorly constrained aerosol-cloud interactions and diverse but persistent marine low clouds

Measurements

Three-year (2015 ~2017) data collected at ENA site by Atmospheric Radiation Measurement (ARM) Climate

Research

Properties Measured	Symbol	Unit	Instruments	Time resolution	Measurement period
Total aerosol number concentration	CN	cm ⁻³	CPC 3772 (TSI)	1s	Oct. 2013 to Aug. 2014, June 2015 to present
Aerosol number size distribution in 55 nm to 1 μm	$dN/dlnD_p$	cm ⁻³	UHSAS-0.055 (DMT)	10s	Feb. 2014 to present
CCN number at five supersaturations (<i>ss</i>) ^a	CCN (ss%)	cm ⁻³	CCN-100 (DMT)	1s, ss level changes every ~12 min	Oct. 2013 to Apr. 2015, July 2016 to present
Aerosol Absorbing coefficient	$B_{\rm abs}$	Mm ⁻¹	3λ PSAP (Radiance Research)	1s, inlet changes between 1 μm and	Oct. 2013 to present
Aerosol Scattering coefficient	$B_{\rm sca}$	Mm ⁻¹	Nephelometer 3563 (TSI)	10 μm every 30 min	Jan. 2014 to present
trace gases of CO, NO ₂ and H_2O	/	ppb	Gas Analyzer 48C (Thermo Electron)	1s	April 2015 to present
trace gas of O ₃	/	ppb	Ozone monitor 49i (Thermo Fisher)	1s	Oct. 2013 to present
Meteorology parameters ^b	/	/	ENA Aerosol Observing System	1s	Jan. 2014 to present
Precipitation rate at cloud base	$P_{\rm CB}$	$\mathrm{mm}\mathrm{h}^{\text{-1}}$	Retrived	30min	
MBL height	$H_{\rm MBL}$	m			
Cloud thickness	h	m	Ceilometer CL31 (Vaisala)	16s	Dec. 2014 to present
Cloudy time fraction	t _{cloud}	1			

 Assume N with Dp > 400nm are all SSA and a conserved shape of SSA production flux

✓ Extrapolate to 100 nm \rightarrow CCN(0.1%) from SSA

✓ Extrapolate to 10 nm \rightarrow CN from SSA

Key Processes of At and Ac mode

FT	SSA
	600

Results

Trace Gas (CO & O₃) Absorbing Aerosol (BC)

✓ Indicator of entrainment from ✓ Indicator of overall effect of free troposphere (FT) at ENA
 FT and precipitation

- Low in summer, high in spring-winter
 Ne approach variation
- No annual variation
- A FT and precipitation scavenging (PRCP)
 ✓ Relatively weak seasonal variations
 ✓ Some annual variation

Modes of Aerosol Size Distribution

$$\frac{LA}{t} = \frac{\partial N_{LA}}{\partial t} \Big|_{NT} + \frac{\partial N_{LA}}{\partial t} \Big|_{SSA} + \frac{\partial N_{LA}}{\partial t} \Big|_{COND} + \frac{\partial N_{LA}}{\partial t} \Big|_{COAG} + \frac{\partial N_{LA}}{\partial t} \Big|_{ACCCHEM} + \frac{\partial N_{LA}}{\partial t} \Big|_{PRCP}$$

FT SSA
(a) 60 (b) 60 (c) 80 (y = 17.78x - 5.40)
(c)
$$(x - y) = 17.78x - 5.40$$

(c) $(x - y) = 17.78x - 5.40$
(c) $(x - y$

✓ Aitken mode (At, <100 nm)
 • not well constrained; N_{At} = CN- N_{Ac} - N_{LA}
 ✓ Accumulation mode (Ac, 100~300 nm)
 ✓ larger accumulation mode (LA, 300~1000nm)

Number Concentration – dominated by At & Ac

N_{LA} ~ BC: poor
 N_{LA} ~ WS: positive
 V_{LA} ∝ PM_c: strong
 ✓ common source
 by continental
 flux F ∝ WS^{3.41}
 ✓ PMc dominated by SSA
 Condensation, Coagulation and cloud chemistry

>12.5

 $V_{
m LA}$ ($\mu {
m m}^3/{
m m}^3$)

10

Wind Speed (m/s)

✓ Not important by calculation

BC (ng/m³)

200

 $\partial \Lambda$

 Aerosols at ENA typically consist of 3 modes: At, Ac and LA, which showed different seasonal variations

- N_{LA} is dominated by SSA and precipitation scavenging, the overall effect being higher in winter and lower in summer
- SSA often contributed a minor fraction of N_{At} (annual average 9.9 %) and N_{Ac} (annual average 20.6 %)
- Controlling processes of N_{Ac} and N_{At} are more complex.
 Sources and sinks for At and Ac modes showed similar seasonal pattern, resulting in their weak seasonal variation

