
(1) (2)

Spatial Dependence of Cloud Properties at Oliktok 
Point in Northern Alaska

At Oliktok Point, the scanning 35 GHz KaSACR radar is located directly at the shore. 
Key Question: How do surface properties (water, ice, bare soil, snow) impact cloud 
properties? 
Data: All KaSACR 5° PPI scans from March 2016 to September 2017. 
Method: Look at relative differences in number of occurrence (reflectivity > 6 dBz).
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Clutter Mitigation, Multiple Peaks, and High-Order 
Spectral Moments for Oliktok Point KAZR Spectra

Retrieving cloud liquid temperature from three-
channel microwave radiometer measurements 
Besides the standard retrievals of integrated water  vapor (IWV)  and  liquid  water path 
(LWP) using ARM three-channel (~ 24, 30 and 90 GHz) microwave radiometer brightness
temperature measurements,  estimates of  the mean cloud  liquid temperature can also 
be obtained. This  does not  require any  additional  remote  sensor or  radiosonde data.

The novel method  suggested  here uses the strong
temperature dependence of the cloud liquid optical 
thickness  ratio  at  W-band (~ 90 GHz) and Ka-band 
(~30 GHz) frequencies. Modeling results shown on 
the left are for different dielectric constant models 
(i.e., Turner at al. 2016; Ellison 2007). The gaseous 
contributions to the  total optical  thicknesses are 
accounted for using IWV radiometer retrievals and 
near surface air temperature and pressure data.

Comparisons of mean cloud liquid
temperatures derived from three-
channel  microwave  radiometer  
at the AMF3 with those obtained 
from ceilometer cloud base and 
interpolated radiosonde data are
shown on the right. 

The agreement is  generally within
~3oC for widely varying conditions
ranging from all  warm stratus  (a)
to  supercooled liquid cloud layers   
embedded  into  precipitating  ice 
hydrometeors (d). 

Matrosov, S.Y., and D.D. Turner, 2018: Retrieving 
mean temperature of atmospheric liquid water 
layers using microwave radiometer 
measurements. J. Atmos. Oceanic Technol., 35, in 
press, doi: 10.1175/JTECH-D-17-0179.1

Identifying Multiple Peaks
By analyzing radar velocity 
spectra, different hydrometeor 
habits can be identified by their 
velocity signatures. For example, 
this velocity spectra profile 
shows both cloud particles and 
ice particles occurring in the 
same height region between 500 
to 800 m. To study cloud dynamics and microphysics, we need to 

identify multiple peaks in the spectra corresponding to 
cloud and ice particles. Identifying multiple peaks is 
the process of identifying boundaries, or integration 
limits, which will be used in the spectrum moment 
equations (Luke and Kollias, 2013). Three types of 
peaks are identified in the spectra: single peak, sub-
peaks, or separate peaks. Every spectrum will have a 
single peak. However, not every spectrum with a 
single peak will have sub-peaks or separate peaks. 

Shift-then-Average Spectra
Velocity spectrum skewness is a noisy 
estimator due to velocity bin-to-bin spectrum 
power fluctuations. Shifting spectrum to a 
common reference during an averaging 
interval reduces spectrum broadening due to 
vertical air motion variability (Giangrande et 
al. 2001). As an example of the shifting 
processing, these panels show eight (8) 
spectra collected over 15 second interval 
before and after shifting to the mean velocity. 
The thick line is the corresponding mean 
spectrum.  References

Giangrande, S. E., Babb, D. M., and Verlinde, J.: Processing 
millimeter wave profiler radar spectra. J. Atmos. Oceanic 
Technol., 2001.
Luke, E. P. and Kollias, P.: Separating cloud and drizzle 
radar moments during precipitation onset using Doppler 
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Manuscript describing the data set:
Williams, C., M. Maahn, J. Hardin, and G. de Boer, 2018: 
Clutter Mitigation, Multiple Peaks, and High-Order Spectral 
Moments in 35-GHz Vertically Pointing Radar Velocity 
Spectra. Atmos. Meas. Tech., submitted.

Results: 
1. There are more 

clouds over land 
than over sea at all 
times.

2. Surprisingly, the 
gradients are 
stronger with 100% 
snow and sea ice 
cover and surface 
fluxes are expected 
to be most similar. 

3. In the polar night, the gradient is strongest at distances larger 15 km, i.e. in the 
free troposphere at altitudes larger than 1.2 km.
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Use of UAS for Coupled Model Evaluation

Oliktok Data for Long-Term Model Evaluation

In addition to event-based model evaluation (e.g. sea ice formation period), the long
measurement record at Oliktok Point and the fact that these have not been assimilated
through the GTS makes this a great dataset for general model evaluation work.

Operational Forecast Models (RAP, HRRR)

Reanalyses Dec. 2013 to Nov. 2015
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Here we evaluate the performance of the NOAA ESRL version of the Regional Arctic
System Model (RASM) in reproducing critical variables for ice formation. This includes
lower atmospheric temperature structure, surface temperatures, and turbulent fluxes
of heat and moisture at the surface. These comparisons demonstrate the ability of
UAS to collect information on vertical structure, spatial variability, and over otherwise
difficult-to-sample environments (new sea ice).
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Self Organizing Maps to Understand Large-scale 
Controls on Variability at Oliktok Point

Self Organizing Maps
• Groups similar data into nodes
• Input:  daily sea-level pressure anomaly 

maps from NCEP-NCAR reanalysis         
(1948 – 2017)

• ß Output: 5x4 grid of generalized 
patterns with a day list for each node. 

• Transition from summer-dominated (low reaching 
into Arctic) to winter-dominated (strong Aleutian 
low) nodes along direction of white arrow.

• Daily-mean observations from OLI are characterized 
for SOM nodes.  E.g. cloud fraction  à

Temperature Variability
• Warm anomalies at OLI 

w/ low over Kamchatka 
Peninsula, Russia

• Driven by (1) enhanced 
LWD from warm moist air; 
(2) enhanced SWD from 
decreased clouds.

• OLI surface temperature 
anomalies are strongly 
correlated with LWD 
anomalies (0.74), 
moderately correlated 
with PWV (0.41), but 
weakly correlated with 
cloud occurrence (0.27) or 
LWP (0.18).
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