Cloud condensation nuclei closure study using HI-SCALE field campaign data – preliminary results

GouriHar Kulkarni,*, Liz Alexander, Connor Flynn, Anne Jefferson, Chongai Kuang, Fan Mei, John Shilling, Janek Uin, Jian Wang, Alla Zelenyuk-Imre, Jerome Fast

1Pacific Northwest National Laboratory, USA; 2National Oceanic and Atmospheric Administration, USA; 3Brookhaven National Laboratory, USA

Cloud condensation nuclei (CCN) closure studies involve comparing measured CCN concentrations with theoretical predictions that are based on simultaneously measured aerosol physical and chemical composition data. Such closure experiments provide a theoretical basis to predict the CCN concentrations of the aerosol that is essential for understanding and modeling aerosol-cloud interactions.

The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign was designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the lifecycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. The bulk hygroscopicity parameter kappa (κ) was calculated using individual k and density values of organics and sulfate chemical components. Airborne k shows wide variability compared to ground measurements. Closure studies based on k-Köhler theory showed that ratio of predicted to measured CCN concentration varied between 0.5 to 2.5. Poor closure is defined when calculated CCN is overpredicted by more than 50%. Different variations of individual k components were tested but did not yield significant improvement in closure. Results shows that goodness of closure depend upon the direction of transported air mass to the site indicating importance of composition and mixing state. More in-depth analysis are ongoing to understand these correlations.

Sensitivity of the closure results will be investigated using size-resolved particle chemical composition, number of different assumptions of mixing state and composition measurements, and in/out-cloud sampling conditions. These studies would help us to understand the applicability of k-Köhler theory in cloud models and to quantify the prediction uncertainties associated with the simple assumptions of composition.

Acknowledgements: The work was supported by the Office of Science of the U.S. Department of Energy (DOE) as part of the Atmospheric System Research Program.

*Science Point of Contact: Dr. GouriHar Kulkarni; GouriHar.Kulkarni@pnnl.gov