

Williams, C.R., 2016: Reflectivity and liquid water content vertical decomposition diagrams to diagnose vertical evolution of raindrop size distributions. J. Atmos. Oceanic Technol., 33, 579-595, doi: 10.1175/JTECH-D-15-0208.1

Williams, C.R., R.M. Beauchamp, and V. Chandrasekar, 2016: Vertical air motions and raindrop size distributions estimated using mean Doppler velocity difference from 3- and 35-GHz vertically pointing radars. IEEE Trans. on Geosci. Remote Sens., 54, 6048-6060, doi: 10.1109/TGRS.2016.2580526.

This work was supported by the US Department of Energy, Atmospheric System Research (ASR)

Colorado Center for Astrodynamcis Research

Decibel Units [dB] (1 dB = 26% 2 dB = 58%, 3 dB = factor of 2) $10log(q) = 10log(N_t) + 10log\left(\frac{\pi}{6}\rho_w \int_0^\infty g(D; D_m, \mu) D^3 dD\right)$ $= N_{t}^{dB} +$ $D_a^{\,dB}(D_m,\mu)$

> **Decrease in LWC with decreasing height implies** evaporation through the loss of mass with height.

Decrease in number concentration and increase in characteristic size is consistent with evaporation of smaller drops and redistribution of mass through breakup & coalescence.

+3 dB is a doubling -3 dB is a halving

Decomposition Diagram shows vertical evolution of: Mass Number of Raindrops Characteristic DSD Shape

3.5 to 0.5 km:	
$B^3 = -8dB$	* Decrease mass
B = -16dB	* Decrease number count
B = +8dB	* Increase characteristic shape
$S = \Delta N_t^{dB} + \Delta D_q^{dB}$	* Δ LHS = Δ RHS

Color of symbols represent height Diagonal lines represent constant q^{dB} Observations that cross constant q^{aB} lines indicate *evaporation* or *accretion*