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1. Introduction The Department of Energy (DOE) Atmospheric Radiation 

Measurement (ARM) user facility makes remote sensing 
measurements of atmospheric aerosols and clouds using a variety of instrumentation 
providing high-quality characterization of the ambient atmosphere. The CHARMS 
campaign took place in northern Oklahoma at the Southern Great Plains site in the summer 
of 2015. During CHARMS, the University of Wisconsin High Spectral Resolution Lidar (HSRL) 
was deployed next to the DOE ARM SGP Raman lidar in order to acquire multiwavelength 
profiles of aerosol backscatter and extinction. HSRL acquired profiles of aerosol backscatter 
at 532 and 1064 nm and aerosol extinction and depolarization at 532 nm. The SGP Raman 
lidar acquired profiles of aerosol backscatter and extinction at 355 nm as well as profiles of 
water vapor mixing ratio. Profiles of relative humidity were derived from Raman lidar water 
vapor profiles and temperature profiles derived from simultaneous measurements from the 
SGP Atmospheric Emitted Radiance Interferometer (AERI). The ARM facility at SGP also had 
surface measurements of chemical composition from the Aerosol Chemical Speciation 
Monitor (ACSM) and humidification factors from surface-located humidity scanning 
nephelometers. The combination of these instruments provided a basis to explore 
lidar-derived ambient humidification factor compared to measurements from 
ground-based nephelometers and derived from ground-based measurements of aerosol 
chemical composition.

2. Methods

3. Results

4. Summary and Conclusions

Certain layers of the lidar profiles were selected based on the criteria in 
Table 1a. These criteria were used to isolate regions and periods where 

changes in aerosol properties were due to changes in RH and not aerosol concentration/type.

Daytime
At or below aerosol Mixed Layer Height

∂θv/∂z ≈ 0; potential temperature gradient
∂r/∂z ≈ 0; water vapor mixing ratio gradient

∂α/∂RH > 0; extinction monotonic + with RH 

Num. Profiles (N>10): 1498
MLH = 1.15 ± 0.7 km

∂θv/∂z = 2.7 ± 1.7 K/km
∂r/∂z = -1 ± 2.3 g/kg·km

19.6% < RH < 93.1%

Figure 1. Meteorological summary of lidar profiles analyzed during the summer, 2015 
CHARMS campaign. Profiles are shown at bin medians for altitudes normalized by the 
mixed layer height (MLH) determined for each profile and binned in steps of 0.1. The MLH 
is at z = zi = 1. Bold lines are medians of (a) virtual potential temperature; (b) water vapor 
mixing ratio; and (c) relative humidity. Thin black lines show the interquartile range.
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Figure 3. Lidar retrieved quantities for 2015 August 02-03; (top-to-bottom) 
HSRL measured aerosol backscatter. Mixed Layer Height (MLH) delineated by 
black crosses and regions analyzed for finding humidification factor 
delineated by black contour; Raman measured water vapor mixing ratio; 
Raman derived relative humidity; Lidar-derived humidification factor

Figure 2. (a) Raman Lidar 355 aerosol extinction as a function of Raman lidar derived Relative Humidity; (b) HSRL Lidar 532 aerosol extinction; (c) 3β + 2α optimal estimation derived fine 
mode volume; (d) HSRL measured aerosol depolarization ratio and (e) HSRL measured lidar ratio (i.e. extinction over backscatter). Bullets are medians and bars are the interquartile range.

(a. 355 nm extinction) (b. 532 nm extinction) (c. Fine Mode Volume) (d. Depolarization Ratio) (e. Lidar Ratio)

• Aerosol extinction and relative humidity profiles were derived from lidar measurements acquired at 
the DOE ARM SGP site in northern Oklahoma. 
• Lidar measurements of the aerosol humidification factor were shown to lie within expected values 
based on surface measurements of humidification factors and estimated humidification factors 
assuming surface chemical composition and AERONET retrieved size distributions.
• Changes in the aerosol size distribution contributed to increased hygroscopicity in the estimated 
humidification factor and probably in lidar retrievals compared to surface nephelometer measurements.  
• A time delay of the lidar-retrieved extinction hygroscopicity parameter (kappa) relating to cloud effects 
was observed. Lidar contributions to understanding aerosol-cloud interactions will be a future focus.
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Table 1a. Analysis region selection criteria Table 1b. Statistical summary 
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Each humidification model is 
simultaneously fit to the lidar retrievals of 
extinction. The models are fit as a system 
of equations so that they share a common 
estimate of the dry extinction coefficient. 
Profiles are fit as 30 minute moving 
averages so that the profiles to the left and 
right influence the fit result.

Figure 4. Required model inputs for calculating f(RH) are shown from left to right
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Figure 5. Kappa time 
series after cloud


