Subcloud controls on shallow-cumulus dilution Daniel Kirshbaum¹, K. Lamer², S. Drueke¹ ¹McGill University, Montreal, Quebec ²Brookhaven National Laboratory, Upton, NY, USA 3 - Cumuli are diluted by entrainment of surrounding air - Modifies internal cloud properties and cloud life cycle - Factors regulating dilution are poorly understood and parameterized - Dilution is a flow-dependent process (e.g., Kirshbaum and Lamer, 2021), but underlying mechanisms are uncertain - Question: how do subcloud processes influence cloud-layer dilution? - Objectives: synthesize ARM observations and LES to investigate impacts of two subcloud parameters - Mean wind speed (V_{sc}), cloud-base mass flux (M_b) - ARM observations: two bulk-entrainment (i.e. dilution) retrievals - Jensen and Del Genio (2006; JD06): entraining parcel model to match ELNB to observed cloud-top height - Drueke et al. (2019; D19): analytic scaling based on TKE similarity theory - Apply at both continental SGP (638 clouds) and maritime ENA (1,920 clouds) over 4+ year period (2015-2019) - Large-eddy simulation (LES): cm1 model (Bryan and Fritsch, 2002) - Consistent results with past model inter-comparison studies (D19) - 5th-order WENO nonoscillatory momentum and scalar advection - 32 m horizontal, 40 m vertical grid spacing Configurations based on continental ARM-SGP (Brown et al. 2002) and maritime BOMEX (Siebesma et al. 2003) cases - V_{sc}: mean subcloud wind speed from sounding - M_b: cloud-base mass flux along cloud chord (JD06) - m_b: time-averaged vertical velocity at cloud base (D19) - Two retrievals give consistent results: • Simulated cloud-core ϵ consistent with retrievals 1 2 3 4 - € depends inversely on mean geostrophic subcloud wind (U) at ENA but not at SGP - € depends inversely on m_b (m_b is much larger at SGP) Interpretive framework based on conceptual model of a cumulus 2 - Two main control parameters: - Core updraft velocity w_{co}: regulates exposure time of cloud to environment - Core-exterior mixing fraction μ : regulates dilution induced by a given entrainment flux - Empirical function explains most variability: $$\epsilon_{\rm DKK} = w_{\rm co}^{-1.14} \mu^{-1.84} - 0.2$$ - As U increases, - w_{co} decreases due to enhanced shear and updraft suppression in lower cloud layer - μ increases, particularly in BOMEX - Trends in μ related to core-shell width (R_m) - Wider core shells: moister core exterior, larger μ - Core-shell width depends on ratio $r = \frac{\sqrt{\text{TKE}_{cl}}}{w_{co}}$ where $\sqrt{\text{TKE}_{cl}}$ is cloud-layer TKE - Trends in μ largely a function of $\sqrt{\mathrm{TKE_{cl}}}$: - Larger m_b and/or U: larger $\sqrt{TKE_{cl}}$, larger μ 2 4 5 - In observations and LES, subcloud wind speed and cloud-base mass flux correlate robustly negatively with ϵ - Trends in ϵ may be explained on the basis of cloud-core updraft speed (w_{co}) and core-exterior mixing fraction (μ) - Dominant effect here (but not always) is μ , which increases with $\sqrt{\mathrm{TKE_{cl}}}$ - Stronger turbulence → wider core shells → moister entrained air → less dilute cores