

Subcloud controls on shallow-cumulus dilution

Daniel Kirshbaum¹, K. Lamer², S. Drueke¹

¹McGill University, Montreal, Quebec

²Brookhaven National Laboratory, Upton, NY, USA

3

- Cumuli are diluted by entrainment of surrounding air
 - Modifies internal cloud properties and cloud life cycle
- Factors regulating dilution are poorly understood and parameterized
 - Dilution is a flow-dependent process (e.g., Kirshbaum and Lamer, 2021), but underlying mechanisms are uncertain
- Question: how do subcloud processes influence cloud-layer dilution?
- Objectives: synthesize ARM observations and LES to investigate impacts of two subcloud parameters
 - Mean wind speed (V_{sc}), cloud-base mass flux (M_b)

- ARM observations: two bulk-entrainment (i.e. dilution) retrievals
 - Jensen and Del Genio (2006; JD06): entraining parcel model to match ELNB to observed cloud-top height
 - Drueke et al. (2019; D19): analytic scaling based on TKE similarity theory
 - Apply at both continental SGP (638 clouds) and maritime ENA (1,920 clouds) over 4+ year period (2015-2019)
- Large-eddy simulation (LES): cm1 model (Bryan and Fritsch, 2002)
 - Consistent results with past model inter-comparison studies (D19)
 - 5th-order WENO nonoscillatory momentum and scalar advection
 - 32 m horizontal, 40 m vertical grid spacing

 Configurations based on continental ARM-SGP (Brown et al. 2002) and maritime BOMEX (Siebesma et al. 2003) cases

- V_{sc}: mean subcloud wind speed from sounding
- M_b: cloud-base mass flux along cloud chord (JD06)
- m_b: time-averaged vertical velocity at cloud base (D19)

- Two retrievals give consistent results:

• Simulated cloud-core ϵ consistent with retrievals

1

2

3

4

- € depends inversely on mean geostrophic subcloud wind (U) at ENA but not at SGP
- € depends inversely on m_b (m_b is much larger at SGP)

 Interpretive framework based on conceptual model of a cumulus

2

- Two main control parameters:
 - Core updraft velocity w_{co}: regulates exposure time of cloud to environment
 - Core-exterior mixing fraction μ : regulates dilution induced by a given entrainment flux
 - Empirical function explains most variability:

$$\epsilon_{\rm DKK} = w_{\rm co}^{-1.14} \mu^{-1.84} - 0.2$$

- As U increases,
 - w_{co} decreases due to enhanced shear and updraft suppression in lower cloud layer
 - μ increases, particularly in BOMEX
- Trends in μ related to core-shell width (R_m)
 - Wider core shells: moister core exterior, larger μ
 - Core-shell width depends on ratio $r = \frac{\sqrt{\text{TKE}_{cl}}}{w_{co}}$ where $\sqrt{\text{TKE}_{cl}}$ is cloud-layer TKE
- Trends in μ largely a function of $\sqrt{\mathrm{TKE_{cl}}}$:
 - Larger m_b and/or U: larger $\sqrt{TKE_{cl}}$, larger μ

2

4

5

- In observations and LES, subcloud wind speed and cloud-base mass flux correlate robustly negatively with ϵ
- Trends in ϵ may be explained on the basis of cloud-core updraft speed (w_{co}) and core-exterior mixing fraction (μ)
- Dominant effect here (but not always) is μ , which increases with $\sqrt{\mathrm{TKE_{cl}}}$
 - Stronger turbulence → wider core shells → moister entrained air → less dilute cores

