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Introduction, Background, and Goals

The transition in cloud morphology over the
Eastern North Atlantic (ENA) from single layer
stratocumulus to cumulus-coupled
stratocumulus is primarily determined by the
surface fluxes and vertical turbulent transports,
which are impacted by drizzle evaporation.

Qur goal is to:

« Quantify and classify the cloud
morphology over the ENA.

* Investigate the characteristics of each
morphological classification and the
transition process from stratocumulus to
cumulus-coupled marine boundary layer
to broken cells.



ARM Data and Methods i o

95% confidence interval

 The G-1 aircraft was deployed during two 20
Intensive measurement periods during the ARM
ACE-ENA (Aerosol and Cloud Experiments in the Eastern
North Atlantic) field campaign:

June 21- July 20, 2017 (used here)
Jan 15 — Feb 18, 2018

« Data collected by a K-a band, Zenith-pointing
Radar (KAZR) and Laser Ceilometer (CEIL)
during 2016 — 2019 summer were used.
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* Areflectivity — rain rate (Z-R) relationship

Z = 7.31R'33% was computed from droplet a0}
size distribution measured by the G-1 aircraft.

* The Z-R relation was used to compute the 40
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drizzle evaporation rate and latent heat flux over R [mm/h]
four years. ACE-ENA summertime Z-R relationship

* 20 flights during the ACE-ENA summer observation period are shown by the colored lines.
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« A K-Means clustering analysis was
used to classify cloud morphology
every 6-hours, producing total of 1464
cases (366 days) based on:

Cloud complexity (Cl)
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K-Means analysis for cloud classification
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ARM Four-year evaporation rate and latent heat flux (LHF)

Latent Heat Flux [W m-]
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5 10| ' * The near-surface LHF caused by drizzle evaporation

E o for drizzling and Cu-topped Sc is the largest, which

3 I I I r almost offsets the LHF from the surface.

g_m_ | * Drizzle evaporation contributes modestly to the near
ERAS surface latent heat budget in single layer Sc and is

2016 2017 2018 2019 negllglble in broken clouds.
Four-year averaged near-surface LHF from ENA (top)

vs. surface LHF from ERA-5 reanalysis (bottom) * Sct Stratocumulus; Cu: Cumulus




ARM

coverage (right)

Single Layer Cu-Coupled

Broken

ENA vs. ERA-5 thermodynamics(left) and cloud
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Cloud Fractional Coverage

Four-year averaged cloud fractional coverage of ENA
(blue) vs. ERA-5 (green)



ARM Summary

= We used a K-Means clustering analysis based on cloud geometry and reflectivity to
classify boundary layer clouds over the ENA into four groups: single-layer Sc, Cu-
topped Sc, deep clouds, and broken clouds.

» Cu-topped Sc has the highest sub-cloud evaporation rate, and broken clouds have the
lowest evaporation rate.

* The near-surface LHF caused by the evaporation of Cu-topped Sc almost offsets the
LHF from the surface.

= ERA-5 reanalysis is generally warmer and drier than ENA observations. Significant
disagreement was found in cloud fractions between ERA-5 and the ENA for Cu-topped
Sc.
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