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Introduction

Objective: Examine and understand atmospheric structure and processes producing
changes in near-surface winds, and the resulting air-ice-ocean responses to wind changes
- wind changes typically observed near atmospheric fronts associated with Arctic cyclones.

- preliminary response results not only involve ice deformation, but also changes in internal
ice stress, upper-ocean currents

Key Premise: Atmospheric winds are primary forcing that moves and deforms sea ice, and
influences upper-ocean currents. Results suggest modification to this statement.

Changes in Internal ~ atmospheric ocean large-scale
ice velocity stress tensor  Slress Stress Coriolis forcing ocean slope
mouwdt = Veo ++ t. - [kX(mf.u)] - mgVH,

Method: Use air, ice, ocean observations from MOSAIC with NOAA CAFS coupled model
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Ice and near-surface atmospheric divergence/ deformation
calculated using GPS buoys (e.g., triads) and L-site Atmos
Surface Flux Systems (ASFS) in distributed network (DN)

ice: mid-Oct 2019 — July 2020; atmos: Oct 10, 2019 — Feb 4, 2020
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Key Synoptic & Mesoscale Atmospheric Structures

Jan 29 - Feb 4, 2020: Two lows emanating from Svalbard; At Polarstern (red P), L, produced rapid
wind speed/direction changes & significant ice dynamics (DWD MSLP analysis; AMSRZ2 ice conc)
; T ;;: Bl T A 2 o T p R o i g e = : D : /:E:? 02 1-—22#50‘{5{0_3#}? - RS i

Second low had quasi-axisymmetric low-level jet (LLJ), appearing as south-southwest LLJ of ~15
m/s in warm sector near 1540 UTC Jan 31 and northerly LLJ of ~21 m/s just behind cold front near
05 UTC Feb 1. Axisymmetric LLJ produced large, surface wind speed and directional changes
between 23 UTC Jan 31 and 04 UTC Feb 1. Reproduced well by CAFS model.

Coupled air-ice-ocean model output (CAFS)

Observed time-height section and surface time series
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Atmospheric Forcing of Ice Motions

- wind speed — floe speed correlation ~ (.8;

Data collection also supported by:
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turning angle ~32-37 deg, but with cyclic variations

Wind Direction (red) vs Floe Direction (blue)
Met City wind dir & fi rift dir; 0130-0204 2020
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- speed/direction transition near 00Z Feb 1 occurs 1.5 - 3 h earlier for ice floe motion than for wind

—

- post-frontal inertial oscillations (arrows) occur primarily in ice motion

T

f Year 2020
ir & floe drift dir; 0130-0204 2020
~ ASFS50 (L3)

implies forcing of local ice motion by wind conditions on other side of front & local ice
acceleration through internal stress term

ift ratio, thresh = 2 m/s; 0130-0204 2020
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Process Diagnostics and Validation Using CAFS

CAFS Output: Virtual potential temperature (color) and isotachs (red isopleths) at 925 hPa for 3 times.
Core of LLJ (black dashed), circulation center (L), Polarstern (P), and warm/cold fronts are marked.
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- quasi-axisymmetric LLJ
- PS passed through warm sector, encountering LLJ near warm front and behind cold front
- model atmospheric structure very similar to observations; primarily small timing differences
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b - - it S8 atmospheric dynamics associated with Arctic cyclones, frequently producing features important for air-
500 S Bé " ice-ocean interactions, such as low-level jets and large direction changes at fronts.
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0= — .'°A/ — b) Case studies from MOSAI1C show that variations in wind speed and direction, generally linked to low-
- Alr, iceih ocean speeds (3 depths) | Atmospheric frontal transitions associated level jets and fronts, produce or enhance ice deformation events and internal ice stress and waves;
' [ Myvinarz0 wind speed and direction changes are - consequently, these ice events are also then linked to the specific regions of Arctic cyclones where the
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i M\w h rapidly transmitted to the ice and into the atmospheric features occur
E 04 "\, \ r”m'% " L A MM\ M,WM"\ 1 ocean mixed layer — post-frontal inertial - however, local ice dynamics events may not be directly forced by local atmospheric forcing, as
- oM ~f “w.nd  ringing of ice and ocean mixed layer atmospheric forcing at a distance may propagate through the ice as internal stress. This case study shows
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Coupled modeling of Feb 1, 2020, cyclone case suggests systematic, coherent relationships between
motions in atmosphere, ice, and upper-ocean during passage of an ~ FESEEESEIE e
Arctic cyclone. These relationships are being verified using the
MOSAI1C observations, but suggest that the passage of atmospheric
Arctic cyclones may have direct and predictable impacts on motions & .
in the ice and upper ocean. Their generality also needs to be assessed e
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