Establishing a Holistic Understanding of the Circulations of Mesoscale Convective System Stratiform Regions
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Fig. 4: Value of a n=2 wave mode Fourier decomposition coefficient from (a) 0629
ez il and (b) 0701 UTC 20 May 2011. Blue is negative (corresponding to the typical
& A stratiform n=2 wave mode), and red positive. Coefficients are only shown if the
Yl By coefficient is determined to be 99% significant per a two-tailed t test, and the entire
G R decomposition is determined to be 99% significant per the F statistic. The black
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* Poor representation of MCS stratiform
regions in model simulations is a result of
an incorrect balance between gravity wave,
line-end vortex, and environmentally
Induced flows.

 That incorrect balance stems from an
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« We theorize that...

* The horizontal extent of the stratiform region is primarily controlled by low-frequency gravity waves, but its vertical
structure is modified by both gravity waves and vorticity-induced flow.
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