A Tour of Events of Interest During the TRACER Campaign

M. P. Jensen¹, S. Saleeby², S. van den Heever², P. Kollias^{1,3}, C. Kuang¹, M. Zawadowicz¹, D. Wang¹, T. Subba¹, M. Deng¹, V. Ghate⁴, S. Giangrande¹, M. Oue³, Z. Mages³, B. Ascher², P. Marinescu², T. Surletta⁴, Y. Feng⁴

¹Brookhaven National Laboratory, ²Colorado State U., ³Stony Brook U., ⁴Argonne National Laboratory

1. RESEARCH OBJECTIVES

The TRacking Aerosol Convection interactions ExpeRiment (TRACER) [1,2] was aimed at collecting a comprehensive set of measurements of convective cloud microphysics, environmental thermodynamics and aerosol chemical and physical properties that will be combined with ensembles of state-of-the-art cloud-resolving model simulations to address uncertainties in our understanding of aerosol-convection interactions and the underlying cloud and aerosol lifecycles.

2. THE TRACER CAMPAIGN

Houston, TX region October 2021 – September 2022 June – September 2022 [Intensive Operational Period]

The humid subtropical climate and coastal urban environment of the Houston, TX region provide a significant number of isolated convective clouds with large and diverse aerosol sources providing an excellent setting for the study of aerosol-convection interactions.

3. SAHARAN DUST EVENT 07/17-18

Dust

MPL linear depolarization ratio

APS total number concentration (>500 nm)

SMPS total number concentration (10-500 nm)

ACSM aerosol mass concentrations

SP2 rBC mass concentration

4. CONVECTIVE CASES FOR MODELLING STUDIES [3,4]

Date	Description
02 Jun	Numerous isolated cells, synoptic influence lacking sea breeze. Mostly clean marine aerosols.
17 Jun*	Convection forced by both sea breeze and large-scale across domain. Mostly clean marine aerosols.
21 Jun	Convective clouds advected from east during late afternoon. Mostly clean marine aerosols.
07 Aug*	Isolated convection under onshore flow and deep moist layer. Polluted before sea breeze, clean marine after.
17 Sep	Isolated shallow convection with no sea breeze. Dry above 5 km. Mixed aerosol.
18 Sep	Like Sept. 17, but a discernible sea breeze develops.

^{*} Indicates cases selected for Model Intercomparison Project

For more information see Poster #1-45 Saleeby et al.

5. SEA BREEZE EVENTS

58 instances of sea breeze frontal passage at the main TRACER site have been identified [5]

Surface meteorology observations from the main TRACER site on 09 June 2022

For more information see Poster #4-16 Deng et al.

6. NEW PARTICLE FORMATION EVENTS

53 NPF events were identified at the main TRACER site.

Class I: Regional aerosol phenomenon: nucleation mode formation and steady growth.

Class II: Sub-regional aerosol phenomenon: appearance of nucleation mode without growth.

Class III: Sub-regional aerosol phenomenon: absence of a clear nucleation mode, but with growth.

Class IV: Undefined growth

For more information see presentation by T. Subba in NPF breakout

7. SHALLOW-TO-DEEP CONVECTION TRANSITIONS

15 Shallow-to-deep convection (> 5 km cloud-top height) cases observed at the main TRACER site

8. ACKNOWLEDGEMENTS

TRACER Science and Operations Teams
Supported by ASR as part of the BNL/ANL PASCCALS SFA

9. REFERENCES

- [1] Jensen et al. (2019) DOE/SC-ARM-19-017
- [2] Jensen et al. (2022) doi:10.1175/BAMS-D-21-0104.1.
- [3] Marinescu et al. (2021) doi:10.1175/JAS-D-20-0200.1
- [4] Jensen et al. (2021) http://acpcinitiative.org/
- [5] Melvin et al. (2023) AMS annual meeting

