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Motivation Methods

Results from the TRACER field campaign suggest that despite differences in both thermodynamic We are building a dataset of isolated convective cells from TRACER and the new SEUS ARM
and aerosol environments between observed convective cells on opposite sides of the sea-breeze campaigns, matched to their initiation mechanism, with observed cell and environment attributes,
front, the strongest cells were those initiated by and remaining near the sea-breeze front.1:2 including “nascent” shallow cumulus cloud top vertical velocity and width (as a proxy for CI
characteristics) and background large-scale ascent. Case-studies of specific initiation mechanisms
(a) | Total sample size Time series of (a) shallow and (b) deepening will be modeled using WRF to _
Continental (172) === SBF (78) Maritime (206) * el composite reflectivity as a function of understand storm-scale dyﬂamlCS
| : sea-breeze front (SBF) relative location? and microphysics.

Table of variables matched to each cell with observation platforms and availability during TRACER
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Atmospheric Variable Matched to Cell Instrument/Source TRACER Sites/Group
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Nascent Cell Cloud Top Vertical Velocity GOES East IR Full coverage
Retrieval

Nascent Cell Width NEXRAD, GOES East VIS Full coverage

Background near-cell thermodynamic Radiosondes, AMDAR soundings, AMF1, ANC, TAMU
environment profiles and derived parameters surface meteorological TRACER, IAH, HOU

- Continental (63) === SBF (23) Maritime (63) K EY S c I E N C E QU E STI O N S (e.g., CAPE, CIN, tropospheric RH) observations, interpolatedsonde
AMF1, ANC, TAMU

Background near-cell kinematic environment Radiosondes, AMDAR soundings,
profiles and derived parameters (e.g., vertical Doppler lidar, radar wind profiler, TRACER, IAH, HOU
wind shear, storm-relative flow) surface meteorological

observations, interpolatedsonde

Wh at fraCtion Of Sha”OW and deep ConveCtiVe Ce”S WEre Background large-scale ascent in lower and ERAS Reanalysis Full coverage

assoclated with various initiation mechanisms during the mid troposphere
TRACER cam p ai g n? Background near-cell surface and lower CCN counters, condensation AMF1, ANC, TAMU

tropospheric profiles of CCN and INP particle counters, DRUM aerosol TRACER
concentration samplers (for offline INP analysis),
micropulse lidar
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Given the apparent sensitivity of
convection's intensity to its initiation

mechanism and meso/synoptic scale What initiation mechanism typically provides the widest,

dynamic forcing, our current project strongest nascent updrafts? ; Nascent cell identified on radar and visible
Investigates the overarching question: RS satellite. Cloud-top vertical velocity will be
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compared to the background important to subsequent evolution than background . 7 g ot T ininfrared satellte brightness temperature. |

. aerosol or meteorological environment?
meteorological or aerosol

environment?
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| Do bulk statistics of convection from coarse simulations
TR that rely on convective parameterizations differ from high-
4 — —— EEF LN o resolution simulations with better resolved initiation and
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distributions for cell environments on <R \J Al sea-breeze front, (middle) outflow

the maritime (MT) and continental | | ’ ’ ' How do different regimeS, including those at the new boundaries, and (bottom) convective rolls

(CT) sides of the SBF?23 - - during TRACER. Each cell in the dataset
SEUS ARM site, affect the answers to these questions? heeds to be categorized by CI mechanism.

Potential Cl mechanisms during TRACER#>:°

Progress and Challenges with Nascent Cell Tracking Observed Aerosol Profile Curve Fitting

(i) We use tobac-flows to track With surface aerosol size distributions and micropulse lidar (MPL) data, we have bulilt vertical profiles
convective cores detected from of observed aerosol profiles and their CCN/INP capability in convective environments during
GOES16 ABI water vapor difference TRACER.12 However, not all sites have full information (e.g., TRACER ANC site), so we are

(WVD; Tgg-Tgyp) field such that WVD developing a curve-fitting procedure to replicate vertical profiles without an MPL.

> 0.5 K min-!for at least 15 minutes. Curve fitting function for parameterizing aerosol vertical profile: Demonstration of predicting aerosol vertical profile using fitting function
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e e g e ., (i) Particle Image Velocimetry®:
' . i Tracks cloud objects using only ABI
L2 cloud mask product (ACM).
. . i
Performance issues in the presence ' 17 R S | u T e
) . 0 2000 0 5000 0 2500 5000
Of CIrrus CIOUdS (Iarge CIOUd maSk) Aerosol Concentration (cm~>) Aerosol Concentration (cm™)  Aerosol Concentration (cm™>)

5000 10 1000 2000 10 Comparison between fitted rm and PBL height | . k= 0.470-(dd/dz) + 1861,

R*=0.27, p=2.3e-07

Demonstration of effect of each term on fitted profile shape
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(i) Flexible cloud tracking using

e * 4 M multivariate data (e.g., combined of = mepan l "

this nascent Example fit (green) to observed profile (black) based on MPL

o) . ‘ol - radar and satellite observations) in backscatter (lower right curtain plot) on 18 May 2022
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Challenges: Fine-tune the
detection of nhascent convective

cores earlier in shallow stage While there i ation. the th 9 .
- | ile there is a correlation, the thermodynamic

when cloud tops are still largely Rl T . . profile alone may be insufficient to explain

forced by Cl mechanism. e e e oo gerosol vertical distributions. Work continues. ..
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Comparison between fitted k and 1
potential temperature gradient at rm

Example cell tracking with (top) GOES 16 true color,
(middle) KHGX radar reflectivity and GOES 16 Tg3,
and (bottom) Tg,; matched to tracked cells.
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Maximum reflectivity (red), minimum clean IR >
brightness temperature (blue), and derived cloud-top
vertical velocity (green) for a tracked nascent cell.
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