Investigating the surface layer CO₂ exchange at BNF under different synoptic setups

Nanditha Subhash and Sandip Pal Department of Geosciences, Texas Tech University

	Variables	Synoptic Classifications	Metrices
2 s via	Sudden drop in temperature and mixing ratio, sudden shift in wind	Frontal passages.	Daytime maximum temperature, Daytime minimum CO ₂ flux.

Motivation

Goals

 CO_2 being a major GHG, an accurate quantification of the CO_2 budget and the distribution of CO_2 sources/sinks is crucial for precise climate simulations. Impact of synoptic scale air mass changes via mid-latitude cyclones on near-surface CO_2 fluxes remained underexplored. Using the recently deployed BNF measurements at SE-US, we aim to eexplore CO_2 , and energy exchanges between atmosphere and biosphere under varying synoptic conditions during day and night across seasons.

Fig 1: a)Locations of the AMF3-BNF site (cyan star) along with the network providing high-quality data on ecosystem fluxes, b) radars and supplemental site's map over BNF.

direction.Image: CO2 flux variability (near surface),
CO2 vertical variability .Extension of Bermuda high and
diverse Gulf inflow patterns.Temperature growth rate,
Dependence on Clearness IndexIncreased cloudiness (Cloudiness
index), Radiation, PAR.Bermuda high present over Gulf
states (Divergence blocking
warm moist Gulf inflow).Temporal variability: On synoptic
timescale during a month and across
seasons.

Preliminary Results

• Impact of synoptic air mass exchange on CO_2 flux variability over a vegetated forest canopy.

- How do the vertical fluxes change in the different atmospheric conditions.
- Data driven approach To find the different synoptic categories & their distinct impact on fluxes

Instruments & Dataset

- High-quality, multi-instrument observation 3rd Atmospheric Radiation Measurement Mobile Facility (AMF3) in north-western Alabama's Bankhead National Forest (BNF).
- Eddy Covariance (EC) measurement \rightarrow 40-m tower for OCT 2024 JAN 2025(Fall & Winter).
- Ultrasonic anemometer: WindMaster Pro by Gill Instruments, Ltd.
- > Open-path CO_2 / H_2O IRGA: LI-7500 by LI-COR, Inc.

Fig 2: a)Eddy covariance instrument at BNF atmospheric observatory in Alabama mounted on 3m tower, b) Meteorological and micro-meteorological variables.

Methodology & Case selection

Fig 3: An example case (14th OCT 2024) illustrating the passage of cold front over

Summary

front passage on 13 Oct 2024.

Oct 2024 citing an excellent example of a cold

 Preliminary results suggest impact of the frontal passages on the CO₂ fluxes yielding significant drop in daily typical CO₂ flux (sink).

The impact of frontal passages on fluxes showed some month-to-month variability suggesting stronger impact in fall than in winter. However, the analyses shown are preliminary and we lack measurements across all months to discern seasonal variability in frontal signatures (if any). More work needed here.

Acknowledgement

We would like to express our sincere gratitude to Texas Tech University for providing the necessary resources and funds to conduct this research. We are especially thankful to Department of Geosciences and atmospheric science group for their support. Data were obtained from the Atmospheric Radiation Measurement (ARM) user facility, a U.S. Department of Energy (DOE) Office of Science user facility managed by the Biological and Environmental Research Program.

October 2024.

<u>Contact information</u>
Nanditha Subhash
<u>nsubhas@ttu.edu</u>
Department of Geosciences,
Texas Tech University

Co-author's contact information

Sandip Pal

Sandip.pal@ttu.edu Department of Geosciences, Texas Tech University U.S. Department of

October (c). Impact of frontal passages on CO2 fluxes (all

frontal events from Oct 2024 to Jan 2025).