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- * There is little overall difference in precipitation between PRISTINE
Sensitivity Tests and POLLUTED, which is mostly determined by large-scale forcing
rather than cloud-scale dynamics and microphysics.

Cloud-Aerosol Coupling

. Cloud droplet activation from a multimodal lognormal Several sets of model_simulations are run with baselin_e, relatively pristine
Serosol size distribution aerosol observed during TWP-ICE (PRISTINE), or relatively polluted » There are large differences in TOA radiative forcing between
aerosol (POLLUTED) as observed in the region during the Nov. 2005 PRISTINE and POLLUTED, mostly reflecting the impact of changes in
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Microphysical sensitivity tests highly sensitive to treatment of graupel density, and moderately
*No immersion freezing of cloud droplets (NOIMM) sensitive to model resolution (for grid spacing between 0.5 and 4 km).

* Wet scavenging by preC|p|tat|o_n below cloud base Is Baseline graupel density from Locatelli and Hobbs (1974) replaced with lower-density
negleCted_- B?Ckgmund aerosol Is assumed to be graupel from Heymsfield and Kajikawa (1987) (GRPL-DENSE)
constant In time.

Aerosol indirect effects exihbit a nonmonotonic response to changes
In horizontal grid spacing.

Horizontal grid spacing sensitivity tests
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