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These are consistent with the lower water vapor content in the

troposphere and reduced lower-tropospheric cloud fraction in
the new simulations. There is a significant reduction of the
difference between pristine and polluted cases, from about 20 to
about 4 Wm?, with the difference between homogeneous and
extremely inhomogeneous mixing reduced to about 2 Wm2. An
unexpected difference between previous and current simulations
is the lower Bowen ratio of the surface heat flux. The change
comes from the difference in the representation of rain
evaporation in the sub-cloud layer between the single-moment
parameterization applied in Grabowski (2006) and the double-
moment scheme used here. The differences in cloud properties
between polluted and pristine conditions are relatively small.
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Comparison of the lower-tropospheric temperature profiles (shown as a deviation
from the surface temperature) between current simulations (BASIC), G06, and
sensitivity simulation (MARPAL) in which the intercept parameter in the rain
distribution was fixed. MARPAL’s Bowen ratio was similar to G06. Dashed lines
are for mean (horizontally-averaged) profiles and solid lines are for gridpoints
with significant rain. The main point is that the near-surface temperature in
regions with rain (i.e., the cold-pool temperature) is significantly lower in G06 than
in BASIC. As suggested by MARPAL, this is because the double-moment rain
scheme predicts significantly lower rain evaporation rates than the single-moment
rain scheme used in G06. This leads to the observed changes in the Bowen ratio
between BASIC and G06 simulations.
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