Evaluating the Effective Stability and Springtime Clouds Simulated in the CAM at the ARM SGP

Atmospheric System Research

. Introduction

from ARM ARSCL is shown in Figure 1b.

similar to observation in Figure 1a.

References

doi:10.1029/2004JD005119.

Minghua Zhang¹, Jingbo Wu², Shaocheng Xie³, Wuyin Lin⁴ ² State University of New York at Stony Brook, ²Columbia University, ³Lawrence Livermore National Laboratory, ⁴Brookhaven National Laboratory,

When we define an effective atmospheric vertical stability as the dry	σ_{e} =
stability compensated by adiabatic	0
heating (Q1), we found that the	$\left(\frac{\partial}{\partial t}+\frac{1}{2}\right)$
compensation is more complete in the	<i>Ct</i>
coarse resolution models than in	0 -
observation for this case. This causes	$c_p =$
faster propagation of the synoptic wave,	
thus earlier dissipation of clouds.	

