Modeling the Formation of Secondary Organic Aerosols from Semi-Volatile Organic Vapors in the Mexico City Region Manish Shrivastava¹, Rahul Zaveri¹, Jerome. Fast¹, Richard Easter¹, and Alma Hodzic² ¹PNNL, ²National Center for Atmospheric Research

Proudly Operated by Battelle Since 1965

Importance of Secondary Organic Aerosols (SOA)

Megacity Initative: Local and Global and Local Research Observations Field Campaign during March 2006

SOA Mass Equilibrium Dynamic: $\alpha_i = 0.1$ Dynamic: α_i =0.01 Dynamic: α_i =0.001

D⁻³

₽4

0-D Box Modeling

While most models assume thermodynamic equilibrium for gas-particle SOA partitioning, SOA formation may be limited by mass transfer → useful to test dynamic approach in MOSAIC

Dynamic approach: the mass accommodation coefficient, α_i , used to compute gas-particle

3-D Modeling

Preliminary simulation for MILAGRO performed with 4 size bins and equilibrium

Develop simplified approach suitable for climate models

- approach; currently revising VBS and evaluating it with several AMS data sets
- SOA from biogenic sources likely to be very important [Hodzic et al. 2009] and not yet included in the present results
- ~16 min per simulation hour using 120 processors, ~2 times more expensive than 'traditional' SOA approach Simulated from VBS at 1730 UTC March 10

