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Problem description

Simulated ice-clouds have large biases in present-day climate Parameterization ot Aerosol Indirect Effect o Sl
models, particularly GCMs that include aerosol-cloud : >
Fountoukis and Nenes (2005) 0ol S/ 00

Aerosol activation as CCN

interactions for nucleating cloud particles inside the

convective towers. Recent cloud-chamber studies have led to -
: : " : : Aero

the discovery of significant nucleating effects of ammonium

sulfate (NH,),SO, aerosols abundant in the upper atmosphere

after all other IN-aerosols have been depleted as CCN.
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Our Approach

Ammonium Sulfate substantially increases the IPNC for
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Giant CCN, 3) with condensation on existing cloud drops versus MODIS
retrievals/ MFRSR data. Note large differences between observational estimates.
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resulting long- and short-wave cloud radiative forcings.
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the center column. Barahona and Nenes (2009) is implemented and tested with ¢ 50 - g
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Our results show that inclusion of (NH,),SO, in the SCM 10- polluted cases (comprising a total of 13 cases). Without
mitigates some major biases in the simulated ice clouds while 2 - T T Ammom””}' SUIthe,,’, thehom'cal th',fk”ess (effea've,mmush)
_ T _ N N Y N is way too low ( igl ), whereas wit Ammonium Sulfate, the
preserving the reasonableness of liquid clouds in McCRAS-AC MR A BRI M S AR MR R values although still biased, are much better and tunable
: : : . to get realistic answers through changes in precipitation
simulations. The results make a strong case for including microphysics (Bhattacharjee et al., 2009).
(NH4)ZSO4 aerosols not only in MCRAS-AC, but in all interactive Influence of including (NH,),SO, on the effective rqdi_us of Ice-cloyd particles
expressed as monthly averages with standard deviation. Ammonium sulfate
aerosol-cloud schemes. reduces the effective radius by half corresponding to an almost eight-fold

increase in IPNC (ice-particle number concentration) .
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