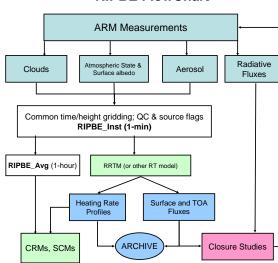
Radiatively Important Parameters Best Estimate (RIPBE) VAP

T. Shippert¹, S. McFarlane¹, J. Mather¹, C. Flynn¹, E. Mlawer², J. Delamere², M. Jensen³, M. Dunn³, L.Oreopoulos⁴, D. Turner⁵, S. Xie⁶

¹Pacific Northwest National Laboratory, ²Atmospheric & Environmental Research, Inc, ³Brookhaven National Laboratory, ⁴NASA GSFC, ⁵University of Wisconsin, ⁶Lawrence Livermore National Laboratory

Introduction

The radiatively important parameters best estimate (RIPBE) product will combine all radiatively important parameters (water vapor, ozone, trace gases, surface albedo, aerosol and cloud properties) required to run a radiation code on a uniform vertical and temporal grid.


Each variable will also include quality control (QC) and data source information. Cloud parameters are designated as 'critical' to the radiative transfer; for other parameters missing values will be replaced by interpolated, climatological, or fixed values.

RIPBE will serve multiple functions for the ARM community:

* It will provide a set of clearly defined, commonly gridded inputs for the Broadband Heating Rate Profile (BBHRP) project.

* It will facilitate the use of BBHRP as a retrieval development testbed by providing a vehicle for swapping input parameters.

* It will be a complement to the Climate Modeling Best Estimate (CMBE) VAP and will provide a significantly expanded set of parameters for model evaluation in a showcase dataset.

BROOKHAVEN

NASA

RIPBE FlowChart

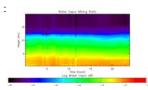
Current Version

- All variables exist in RIPBE file
- Implemented generic gridding and
- interpolation procedure
- Implemented detailed 2-D bit-packed qc information for all variables
- 1 year (3/2005- 2/2006) run at SGP
- Initial version of BBHRP interface developed

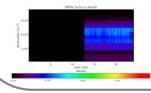
Work in Progress

- Implement new version of MicroBase with enhanced qc flags
- Add 1-D summary qc flags
- Implement v2 of MergedSounding (includes heights up to 60 km)
- Determine appropriate climatological values for aerosol properties
- Develop averaged output file for modelers

Inputs

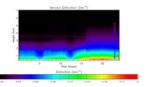

For more information

(509) 375-6402

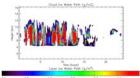

All inputs are sampled, interpolated, or averaged onto a common time-height grid

Atmospheric state:

- Temp/water vapor profiles from Merged Sounding
- Ozone column from TOMS or OMI; standard profile
- Column values of trace gases

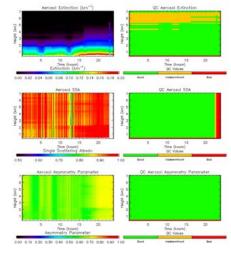

• Surface Albedo: •Band-averaged values of surface albedo from SfcSpecAlbedo

ENERGY


• Aerosol:

 AOD, extinction profile, asymmetry parameter, SSA at 500 nm from AerosolBestEstimate (ABE)
Spectral values of extinction based on Angstrom parameter

Clouds:


Phase, water content, particle size from MicroBase

ARM

QC and Source Flags

Quality control and data source flags included for every variable

Example QC flags for aerosol inputs:

- •Extinction values less than zero - marked as indeterminant and set to zero
- Missing SSA (gap too long to be interpolated) marked as bad
- · Currently set to zero
- Will be set to climatology and source flag changed
- No aerosol values in lowest height bins; currently marked bad – need to redefine QC as not expected

www.pnl.gov