High Resolution Simulations of the December 2007 Ice Storm: Comparison of Microphysics Schemes
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and Observations

High resolution (4km) simulations of a winter weather event in the Southern Plains are conducted using the ARW-WRF model. This model has a number of microphysics schemes able
to simulate cold season precipitation. It is therefore a useful tool for inter-comparison of schemes and their ability to simulate the evolution of this event and its associated cloud and
precipitation processes. This poster selects a few key parameters across microphysics schemes and qualitatively compares them to observations from ARM model and observational

products, and NEXRAD radar reflectivity.

2. Case Study
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Figure 6: Example of Simulatedvs observed(composite) radar reflectivity for
selection of Microphysics Schemes vs observedfor 00Z 10" December 2007.
Simulated reflectivities calculated where possible using the assumptionsin

Figure 4: Hydrometeor mixing ratios (Time averaged and domain averaged for 10 nearest grid-
pointsto SGP, g/kg). There are no validating observations available for hydrometeor mixing
ratios. All but WSM5, Thompson et al, produce mixed phase precipitation at the surface.

Observations Goddard, WDM6, Morrison suggest greater fraction of frozen precipitation (sleet/snow mix). the applicable _rnicmphysics scheme. f’-‘all schemes werest!mate precipitation
«ARM CMBE data. version 2 (Xie et al 2010) coverage, particularly over Kansas & justeastofthe Rockies. The model
’ ’ \ wind fields showedanomalous upslope flow which likely contributed.

Nonetheless, all schemesbreak out convection over Oklahoma although the
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*Observed vs simulated evolution of precipitation shows both temporal and
spatial discrepancy. Model wind fields differ from observations, allowing greater

Figure 5: Surface precipitation rate (mm/hr) for 12Z 10"-12Z 11" (left) and 12Z 11"-0Z 12" December 2007.
ARM CMBE observationswere missing in the left figure, likely due to icing. MOLTS andin situ observations
show discrepancy in magnitude butare close in temporal evolution. WRF precipitation is overestimated for
all MP schemes, particularly duringthe 10™. On the 11" WRF precipitation appearstolag behind
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«  Figure 2: Time height/pressure plots of cloud fraction for each microphysics
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Figure 3: Time average cloud water and ice mixing ratios in g/kg, computed for the 10 nearest grid points to

the SGP Lat/Lon. WSM3 is omitted as the scheme does not predict snow, ice and graupel mixing ratios. Acknowledgement;

Temporal evolution of mixing ratios (at 3 hour intervals, not shown) suggest that the model captures the .

variability in maximum cloud water mixing ratio, e.g, Thompson et al scheme reproduces magnitude and This work was Supported by U.S Department of Energy Grant DE-FGO2-
vertical extent of cloud water well in the first 24 hours, whilst WDMEG6 is best at capturing low level ice mixing OS5ER64062

ratios.
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