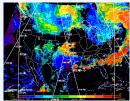

Comparison of Cloud Vertical Structure from Passive Satellite Measurements and ARM Radar-Lidar Measurements

P. Minnis¹, W. L. Smith, Jr.¹, Y. Yi², M. M. Khaiyer², X. Dong³, B. Xi³, M. L. Nordeen², J. K. Ayers²

¹NASA Langley Research Center, Hampton, Virginia

²Science Systems and Applications, Inc., Hampton, Virginia



· GOES thick, ice cloud base heights high (low) during day (night) by 0.8 km; improved method needed

 Initial profile comparisons are encouraging, variety of issues still need to be addressed - how to make quantitative assessments when heights and thickness errors are separate problems? - matching of pixels with radar beam: parallax, size of box, time vs. space, etc. - improved resolution possible? Multi-layer clouds? (see Chang poster), how to treat cloud base with precip?

Acknowledgment

This research supported by the ARM Program via ITF No. 18971 with NASA LaRC through Batelle, PNNL.

Te Bin

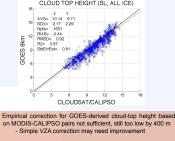
ALI

Te < 220k

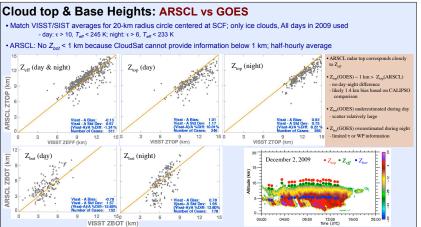
220 ≤ Te < 235 235 ≤ Te < 250

 $250 \le Te < 273$

Summary of Biases for Teff Ranges

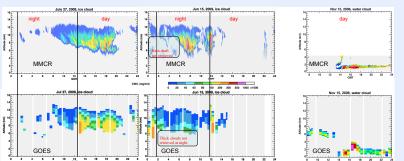

2011 Bias (km)

-0.44


0.26

-0.34-0.79

-0.63



Comparisons with ARSCL can be interpreted properly

Cloud Water Content Profiles: MMCR vs GOES

Examples show lower resolution GOES CWC profiles compared to MMCR for 3 cases of variable cloud depths

· GOES profiles capture general behavior of CWC as seen from the surface, but smearing of peaks Magnitudes generally consistent, except at night when τ is limited to less than 20, thin cloud profiles ok · Some height/thickness issues that must be taken into account before quantitative assessment be made e.g., water cloud example: thickness too large spreading LWC too thin & Z_{ton} at 17 UTC too large

Summarv

 ARSCL thick, ice cloud-top heights too low (1 - 2 km); radar cannot see small xtals at top or thru thick clouds VAP can be developed using matched GOES and radar data to adjust thick high cloud tops