Raman Lidar Retrievals of Mixed Layer Heights

Richard Ferrare1, Marian Clayton2, David Turner2, Rob Newsom4, Amy Jo Scarino2, Sharon Burton2, Chris Hostetler2, John Hair2, Michael D. Obland3, Raymond Rogers1
1 NASA Langley Research Center, Hampton, VA, USA 2 Science Systems and Applications, Inc., Hampton, VA, USA 3 NOAA NSSL, Norman, OK, USA 4 Pacific Northwest National Laboratory, Richland, WA, USA

Background
PBL height is a key parameter for:
- simulating climate processes
- assessing model simulations of aerosol and pollutant concentrations and transport

Uncertainties in modeled PBL heights due to:
- model parameterizations
- differences in definition

Planetary Boundary Layer (PBL): directly influenced by earth’s surface (may be turbulent or stable)

Mixed Layer (ML) (or Convective Boundary Layer): subset of cases where turbulence tends to uniformly mix tracers within about an hour

Mixed Layer Height via Water Vapor and Aerosol Gradients
- PBL heights derived from Raman lidar cloud-screened aerosol backscatter and water vapor profiles
- Automated technique uses a Haar wavelet covariance transform to identify sharp aerosol and water vapor gradients at the top of the PBL (Brooks, IAOT, 2003)

- These heights often correspond to gradients in potential temperature

“Best estimate” Mixed Layer Heights
- Complicated aerosol structures within the boundary layer or residual layer(s) above boundary layer can prevent the algorithm from producing satisfactory results.
- “Best-Estimate” mixed layer heights combine results from automated algorithm and manual inspection of Raman lidar water vapor and aerosol profiles
- “Best-Estimate” mixed layer heights available for April-June 2011 period (e.g. MC3E) and June 2009 (e.g. RACORO)

Limitations of ML heights via water vapor & aerosol gradients
At night, largest water vapor and aerosol gradients are often associated with residual layer(s) above the nocturnal BL, confounding algorithms that use water vapor and aerosol backscattering

BL heights from Raman Lidar using water vapor, aerosol backscatter, and potential temperature
BL heights from potential temperature may help provide a more complete picture of diurnal BL behavior

Night Day

Comparison of BL heights from RL water vapor and RL+AERI potential temp. profiles
For data from June 2009 and April-June 2011:
- Daytime: ML heights derived from potential temperature and water vapor are comparable
- Nighttime: ML heights from potential temperature are considerably (100-500 m) lower than heights from water vapor and aerosol backscatter

Summary
- Mixed Layer (ML) heights are derived from SGP Raman lidar measurements of water vapor and aerosol gradients
- “Best estimate” ML heights are derived from the water vapor gradients after manual inspection of results from automated algorithm.
 - June 2009 (RACORO)
 - April-June 2011 (MC3E)
- ML heights derived from water vapor & aerosol gradients have limitations
 - Elevated layers can be mistaken for the Mixed Layer
 - Nighttime Boundary Layer is difficult to detect
- To overcome these limitations, Boundary Layer (BL) heights are derived from combined (Raman lidar + AERI) potential temperature profiles for 2009-2011
 - Better agreement with BL heights from radiosondes
 - More consistent diurnal BL representation
- Much of AOT and PWV remain above BL
- Work in progress:
 - Improving automated algorithms
 - Retrieving BL heights from Darwin Raman Lidar

Boundary Layer Height using RL+AERI potential temp
- Potential temperature profiles derived from a combination of AERI + Raman lidar temperature retrievals
- AERI temperature profiles are spliced onto the bottom of Raman lidar temperature profiles
 - Raman lidar rotational Raman scattering (z > 700 m)
 - AERI radiances (z < 700 m)
- PBL heights derived from these profiles using modified Heffter technique tailored to SGP site (Della Monache et al., JGR, 2004)

Why combine Raman lidar and AERI temperature profiles?
- AERI vertical resolution quickly increases with altitude
- Raman lidar temperature profiles require significant correction for non-unity overlap function near the surface
- Splicing profiles takes advantage of better AERI performance near the surface and higher resolution Raman lidar profiles farther away from the surface

Diurnal PBL Behavior for Each Season
PBL heights derived from RL+AERI potential temps from 2009-2011:
- highest PBL during summer
- lowest PBL during winter

Aerosol Optical Thickness and Precipitable Water Vapor within PBL
Fraction of Aerosol Optical Thickness (AOT) and Precipitable Water Vapor (PWV) within the PBL as derived from RL+AERI potential temps from 2009-2011:
- During nighttime, most (60-80%) of AOT and PWV above PBL
- During daytime, much (30-60%) of AOT and PWV above PBL

Work in Progress – Darwin Raman Lidar
- We are starting to study data from Raman lidar at Darwin, Australia
- Data available from December 2010 to October 2011
- Raman lidar temperature profiles not yet available

Acknowledgements
This research was supported by the U.S. Department of Energy’s Atmospheric Science Program Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under Interagency Agreement DE-SC0005521, as well as by the NASA Science Mission Directorate.