

MOTIVATION

- Cloud resolving model (CRM) is a convenient platform to test parameterizations used in the multiscale modeling framework (MMF).
- MMF simulations produce too much high-level cloud with high optical depth.
- Investigation of the microphysics parameterizations in the embedded CRM can provide insight for the cause of these issues.

MODEL SETUP

- CRM: System for Atmospheric Modeling (SAM) is the embeded CRM in the Colorado State University MMF.
- Case: ARM SGP 1997 summer IOP and its subcases; large scale forcings from variational analysis by *Zhang et al* (2001).
- Radiation scheme: CAM3 radiation.
- Microphysics: Morrison et al (2005) two-moment schemes and the default one-moment schemes in SAM.
- **•** Domain size (2D): 1024 km \times 27 km.
- Resolution: $\Delta x = 1 \text{ km}$, $\Delta z = 75 \text{ m} \sim 500 \text{ m}$, $\Delta t = 10 \text{ s.}$
- Radar simulator: Quickbeam (*Haynes et al*,2007) using size distribution consistent with microphysics.

RESULTS

- Two-moment microphysics better reproduce the observed reflectivity histograms compared to one-moment microphysics.
- Two-moment microphysics generates significantly more cloud than the ARM MMCR observations and one-moment microphysics has much less cloud cover.
- The periodic lateral boundary conditions play an important role in the positive bias of cloud occurrence by artificially maintaining residual cloud after convection, in both microphysics schemes.
- $\cdot N_i$ is too high in two-moment microphysics; improvements in ice nucleation schemes may better represent convective clouds.

OTHER TESTS SHOWING LITTLE IMPROVEMENT

- Use prescribed radiative forcing
- Apply large scale subsidence to vertical velocity and hydrometeors.
- Increase teminal fall speed for ice, $V_{T,i}$ by 50%
- Use thermodynamic nudging with $\tau = 2$ hr. ~ 50 hr.
- Switch to 3D, higher resolution, different domain size.

• p	re
-----	----

Evaluation of Cloud Microphysical Parameterizations in Cloud-resolving Model Simulations Using the ARM Observations

SAM1MOM: 1-moment ARM: observations

- ecipitation events are well reproduced.
- OLR from both schemes are too low.

Cloud occurrence

OLR (W/m ²) and precip. (mm)										
CASE	A	В	С	Х	A	В	С	Х		
CNTL	251	239	243	234	33	23	19	125		
SAM1MOM	270	263	260	252	34	25	19	129		
OBS	260	249	253	262	33	21	20	125		

- ► dBZ_e histograms are normalized w.r.t. total cloud occurrence
- SAM1MOM: reflectivity too low (peak 20 dB off)
- CNTL: good agreement with OBS above 11km, with peak at about the same reflectivity values. More deviation below 10 km.

- CNTL: too much cloud SAM1MOM: not enough cloud Less cloud in subcases
- Issues with dry periods

Cloud free periods according to the ARM MMCR Residual cloud can be maintained and cycles within the domain for over 20 hours.

Zheng Liu, Andreas Mühlbauer and Thomas Ackerman

Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, {liuzheng,andreasm,ackerman}@atmos.washington.edu

Forecast runs: Influences of periodic B. C.

- Break up the simulation to a series of short pieces. Restart with observed sounding for each piece and allow the model to spin-up for each short simulation.
- Stitch together (excluding spin-up) for analysis.

- Restarting for each piece cleared the domain of the residual cloud after convection.
- As the length of forecast and spin-up time decrease, the cloud occurrence significantly deceases.
- The OLR time series shows much better agreement with observations for "dry" periods in between convection.

ICE NUCLEATION SCHEMES

• **ARM:** observations

- observations.


```
• \Delta N_i in current ice nucleation schemes is
 dependent exponentially on T_{abs}.
• Modeled N_i peaks at values about one
 order of magnitude larger than
• Modeled N_i has a much narrower peak
 than the observed distribution.
Meyers et al (1992) scheme for
 condensation/deposition freezing can
 decrease cloud cover (left), and improve
 OLR histograms (not shown).
N_i is also decreased, but too
 aggressively. Need more subtle
```

treatment on ice nucleation.