On using the relation between Doppler velocity and radar
reflectivity to distinguish microphysical regimes in ice clouds
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Motivation Application to ice cloud climatology A look at the microphysics
Ground-based profiling Doppler cloud radar are excellent tools to observe 0 0 Assuming that in a cloud layer the a and b from (1) vary only slowly with
vertical (ice) cloud structure (Kollias et al., 2007). To improve the 0.2 | 5 0.2 | | height h, (1) leads to:
parameterization of ice clouds in numerical models, it is important to o | _ AlnV, )/Ah (2)
. . . = -04 0.4 A(InZ)/Ah
understand the link between radar observables and microphysical © _ , _ _ _
properties of ice clouds (Szyrmer et al., 2012). Here, the possibility of using S 08 08 The rate of change of the melted diameter D, via a given microphysical
profiles of the Doppler velocity (V,)- radar reflectivity (Z) - power-law relation E 08 0.8f process PRC such as deposition or riming can be written as :
to distinguish microphysical regimes in midlatitudinal ice clouds is explored. E 1 1 dD, ¥
S 0 0.5 1 1.5 0.4 —  =xD, (3)
E E dt PRC
Methodology s | ) Using (3) within a two-moment (Ms,Ms) normalization scheme with a selected
= 05 RN 0 Particle Size Distribution (PSD) shape and assuming single particle terminal
=R SN SN SR _ ool T ,
Power-law: |V, =aZ b \with V,(ms?), Z (mmb m3) (1) = 5 velocity is expressed as  u(D,)=xD, (4)
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= the b calculated from (2) is only a function of y, w and the PSD shape
The V, - Z — power-law relation is determined for finite time intervals (30- 0B . N N ‘ 06 parameter 0. Results shown are calculated assuming lognormal PSD shape.
120min) using MMCR data. The methodology is explained in detail in 0.8/ | -0.8 03
Kalesse and Kollias, 2013. There, the focus is on decomposition of V into y r a a ; a '
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vertical air motion (w) and reflectivity-weighted particle terminal fall Reflectivity (dBZ) V. (ms™ 0.2
velocity(V,), here it is on deriving smooth vertical profiles of the power-law d 2 01
relation. A weighted total least-squares (wtls) linear regression (Krystek and * Mean protiles derived for SGP single-layer ice cloud observations 1997-2010 = 00
Anton, 2007) taking into account the uncertainties of the data in both * Subdivision in cloud depth categories (thin:<1.5km, med: 1.5-3km, thick:>3km) £ U
coordinates is used. The uncertainties are represented by the standard * Large standard deviation considering all ice clouds ((iashed line) S 0.1
errors of the means in each reflectivity bin of 2 dBZ. The V,-Z-relationship is * Which modes explain most of the observed variance? - 05
determined as function of height H with a very high vertical resolution ~ Find out via principal component analysis (PCA, e.g., Zivcovic, 1995) e |
(135m). Changes of this relationship with distance from cloud top reflect - . . 03—
different microphysical regimes and ice particle growth processes which Principal Component Analysis (PCA) 15 1.0 -05 gﬁgonegﬁr 1.0 1.5 20
lead to changes in ice particle size, number, and density. | + First PC mode which explains 89% of observed variance:
The algorithm is applied to MMCR observations of single-layer ice clouds at . ) . Deposition process:
the ARM Southern Great Plains (SGP) during 1997 — 2010. ' s
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MMCR radar reflectivity Z and Doppler velocity V, for ice cloud observed at SGP on 8 Dec, 2004. 25 -20 15 10 -5 ) 0.4 0.5 0.6 0.7 0.8 0.0 01 0.7 0.3
Reflectivity (dBZ) v, (ms) : = : :
12 ! ! 12— ! 12 —— d melted diameter D, [mm]
a —awtls b — b wtls c —Ewils
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