
Modi Chen, Mari Titcombe, Jingkung Jiang, Coty Jen, Chongai Kuang, Marc L. Fischer, Fred L. Eisele, Ilja Siepmann, David R. Hanson, Jun Zhao, Peter H. McMurry

ABSTRACT

Our goal is to understand the physical and chemical processes responsible for new particle formation in the atmosphere. Nucleated particles grow to sizes that serve as seeds for cloud droplet formation (50-100 nm). New particle formation is an important process for climate modelers because of its effects on cloud cover, which influences albedo. Our strategy involves developing instruments that can measure the trace concentrations (typical mole fractions 10^{-11} to 10^{-12}) of species in the atmosphere that participate in nucleation and growth, and to develop models that are consistent with those measurements.

Acid-Base Reaction Nucleation Model

SIMPLE CONCEPTUAL MODEL FOR CHEMICAL NUCLEATION BASED ON OBSERVATIONS SHOWN IN FIGURES TO THE LEFT

- Dimer (A_2), Trimer (A_3), Tetramer (A_4) contain two, three, and four H_2SO_4 molecules plus other compounds (water, ammonia, amines, etc.) that cannot be detected with the cluster CIMS.
- Conceptual model treats nucleation as a series of chemical reactions between acidic and basic compounds.
- Reaction of More Volatile Dimer (MV) with a basic gaseous compound produces a Less Volatile dimer (LV).
- Tetramer (A_4) is the smallest stable cluster. Therefore, $J=A_4$.
- Model does not yet take into account possible dependencies on temperature and relative humidity.

Prototype Instruments for Nucleation Research

Developed by Members of Our Research Team

Particle number distributions down to 1 nm

McMurry group

Jingkung Jiang, Modi Chen

Number Distributions Down to One Molecule

From Chamber Experiments at U. Minnesota

Measured; t=time after lights were turned on

Titcombe, PhD Thesis; Chen et al, PNAS, 2012

Acid-Base Chemical Reaction Model Agrees with Direct Observations of Nucleation Rates to within about 10X

Chen et al, PNAS, 2012

Acknowledgements: US DOE Grant No. DE-SC0006861, NSF Grant Nos. ATM-0506674, 1068201, CHE-10513996, DOE Graduate Fellowship (MT), NSF Graduate Fellowship (CJ), Guggenheim Fellowship (PHM)