Reducing and quantifying uncertainties in climatically relevant cloud microphysical parameters derived from optical array probes

Robert Jackson¹, Greg M. McFarquhar¹, Jeff Stith², David C. Rogers², Jorgen Jensen² and William A. Cooper²

¹University of Illinois at Urbana-Champaign, Urbana, IL ²Research Aviation Facility, National Center for Atmospheric Research (NCAR), Broomfield, CO

1. Motivation

- In situ measurements of ice crystal number distribution \(N(D)\), ice water content \(IWC\), median diameter \(D_{\text{mm}}\), effective radius \(r_e\), and extinction \(\beta\) from 2D Cloud Probes (2DCs) potentially affected by shattered artifacts
- Data from National Research Council of Canada Convair-580 collected during Indirect and Semi-Direct Aerosol Campaign (ISDAC) and from National Science Foundation (NSF)/NCAR C-130 during Instrumentation Development in Airborne Science 4 (IDEAS-4) campaign used to assess impact of shattered artifacts on \(N(D)\), \(\beta\), \(D_{\text{mm}}\), \(r_e\), and \(IWC\) in varying cloud conditions

2. Shattering removal techniques

- Use of modified tips reduces \(\beta\), \(IWC\) from 2DCs by ~20% no systematic bias in \(r_e\)
- Bias in \(D_{\text{mm}}\) up to a factor of 4, with 67% difference on average.

3. Field projects

- Parameters derived from ISDAC (30 Apr. 2008) and IDEAS-4 data (25 Oct. and 1 Nov. 2011):
 - \(N_N(0.25 < D < 1.6\,\text{mm}), IWC_{\text{st}}, \beta_{\text{st}}, r_{\text{st}}, \) and \(D_{\text{mm-st}}\) from standard tips 2DC
 - \(N_N(0.25 < D < 1.6\,\text{mm}), IWC_{\text{mo}}, \beta_{\text{mo}}, r_{\text{mo}}, \) and \(D_{\text{mm-mo}}\) from modified tips 2DC
 - High-resolution particle images from a (3V) Cloud Particle Imager.

Method: Compare \(N(D)\), \(IWC\), \(D_{\text{mm}}\), \(r_e\), and \(\beta\) for 2DCs processed with/without shattering removal algorithms.

4. Analysis of \(N(D)\)

- \(N_N\) (no algorithms used)/\(N_e\) (algorithms used) for IDEAS-4 for standard (red) & modified (blue) probes. Shattered artifacts present with modified tips \(\rightarrow\) need algorithms. \(N_N/N_e < N_N/N_{\text{mo}}\) \(\rightarrow\) tips more effective than algorithms at removing shattered particles.

5. Bulk properties

- \(IWC_{\text{mo}}\) vs. \(IWC_{\text{st}}\) for IDEAS+ISDAC showing ~20% difference. No algorithms used.
- \(\beta_{\text{mo}}\) vs. \(\beta_{\text{st}}\) for IDEAS+ISDAC showing ~20% difference. No algorithms used.

6. Conclusions

- Using shatter reducing tips reduces \(N(D) < .5\,\text{mm}\) by factor of > 2 for \(D_{\text{mm}} > 1\,\text{mm}\)
- Larger \(D_{\text{mm}}\) and presence of graupel are predictors of amount of shattering
- Using modified tips & artifact removal algorithms removes more shattered particles than artifact removal algorithms alone for 2DC
- Shattered artifacts still impact \(N(D)\) derived from probes with modified tips
- Use of modified tips reduces \(\beta\), \(IWC\) from 2DCs by ~20% no systematic bias in \(r_e\)
- Bias in \(D_{\text{mm}}\) up to a factor of 4, with 67% difference on average.

7. References

8. Acknowledgements

This work was supported by the Office of Biological and Environmental Research (BER) of the U.S. Department of Energy (DE-SC0001279 and DE-SC0000300) as part of the ASR + AIF program, as well as the NSF and the NCAR Advanced Study Program. Data were obtained from the ARM program archive, sponsored by the U.S. DOE, Office of Science, BER, Environmental Sciences Division. NCAR is supported by the NSF.